Advent of Code is back! Unwrap daily challenges to sharpen your Alteryx skills and earn badges along the way! Learn more now.

Weekly Challenges

Solve the challenge, share your solution and summit the ranks of our Community!

Also available in | Français | Português | Español | 日本語
IDEAS WANTED

Want to get involved? We're always looking for ideas and content for Weekly Challenges.

SUBMIT YOUR IDEA

Challenge #333: Remote or Not Remote

AYXAcademy
Alteryx
Alteryx

A solution to last week’s challenge can be found here.

 

For this challenge, imagine you are a senior-level professional researching the job market.

 

The first dataset contains information about the job market in data analysis. The second dataset contains the country codes and the full names of the countries.

image_333.png

 

The experience is categorized into 4 levels:
- EN: Entry-level/Junior
- MI: Mid-level/Intermediate
- SE: Senior-level/Expert
- EX: Executive-level/Director

 

Remote ratio correspondence:
- If Remote_ratio = 0, the job is onsite.
- If Remote_ratio = 50, the job is hybrid.
- If Remote_ratio = 100, the job is remote.

 

 

 

Question 1
Taking into consideration the average salary, find the 5 best opportunities for a senior-level professional working full-time, 100% remote, and the countries where these opportunities can be found.
Only consider job titles that appear more than once and salary in USD.

 

Question 2
How do the remote, hybrid, and onsite ratios vary from 2020 to 2022? Build a graph to show your results.

 

Hints
- Append the country name in the dataset using the company_location_country_code field.
- Change your data types accordingly.

PhilipMannering
16 - Nebula
16 - Nebula

It's 100% Remote here at Aimpoint Digital. Solution attached,

Spoiler
PhilipMannering_0-1661176532478.png

 

Adding my solution in the Python Tool,

Spoiler
PhilipMannering_6-1661179248996.pngPhilipMannering_5-1661179127761.png
Spoiler
from ayx import Alteryx
import plotly.express as px


#################################
df = Alteryx.read('#1')
country_mapper = Alteryx.read('#2')


#################################
job_count_mask = df.groupby('job_title')['job_title'].transform('count') > 1
df1 = df[job_count_mask]


#################################
mask = (df1.employment_type=='FT') & (df1.remote_ratio=='100') & (df1.experience_level=='SE')
df1 = df1[mask]


#################################
df1 = df1.join(country_mapper.set_index('country_code'), on='company_location_country_code')


#################################
df1['salary_in_usd'] = df1.salary_in_usd.astype(int)


#################################
df1.groupby(['country_name', 'job_title'], as_index=False)['salary_in_usd'].mean().nlargest(5, 'salary_in_usd')


#################################
df2 = df.groupby(['work_year', 'remote_ratio'], as_index=False)['salary'].count().rename(columns={'salary':'count'})


#################################
df2['remote_ratio'] = df2.remote_ratio.map({'0': 'Onsite', '50': 'Hybrid', '100': 'Remote' })


#################################
df2 = df2.sort_values('remote_ratio').rename(columns={'remote_ratio':'Work Type', 'count':'Count', 'work_year':'Year'})


#################################
px.bar(df2, x='Work Type', y='Count', color='Year', barmode='group')

 

mmontgomery
11 - Bolide
11 - Bolide

Challenge 333

Spoiler
I did a slightly different chart. I put year as x-axis instead of remote type to make it easier to see the trend over time
mmontgomery_0-1661176963101.png

 

TheOC
15 - Aurora
15 - Aurora

A couple of little pitfalls with that one, be careful to read the question!

Spoiler
TheOC_0-1661177307162.png

 

 

Cheers,
TheOC!


Bulien
IraWatt
17 - Castor
17 - Castor

Nice challenge:

Spoiler
IraWatt_0-1661178054837.png

 

AkimasaKajitani
17 - Castor
17 - Castor

My solution!

 

Spoiler
AkimasaKajitani_0-1661178804794.png

 

AkimasaKajitani_0-1661178868648.png

 

alexnajm
17 - Castor
17 - Castor

Like @PhilipMannering said, we are 100% remote at Aimpoint Digital 😊

Spoiler
Challenge 333.PNG
RolandSchubert
16 - Nebula
16 - Nebula
Spoiler
W333.png
Spoiler
R333.png
MilindG
12 - Quasar
Spoiler
MilindG_0-1661180148591.png

 

MuralidharAreti
8 - Asteroid

I had to do some debugging because I wasn't getting the right answer at first. I left my debugging steps in so that you can see where I made an adjustment. 

 

Spoiler
MuralidharAreti_0-1661181589217.png