This site uses different types of cookies, including analytics and functional cookies (its own and from other sites). To change your cookie settings or find out more, click here. If you continue browsing our website, you accept these cookies.
If there is a space in the temporary directory, Predictive tools in Data Investigation, Predictive and Time Series and even R tool fail with errors like the following:
Error in parse(text - 5): :1:17:unexpected INCOMPLETE_STRING
When using the R tool, packages can be downloaded from CRAN and installed, but it will be important that the version of R installed in Designer must be compatible with the package version.
This tool provides a number of different univariate time series plots that are useful in both better understanding the time series data and determining how to proceed in developing a forecasting model.
The humble histogram is something many people are first exposed to in grade school. Histograms are a type of bar graph that display the distribution of continuous numerical data. Histograms are sometimes confused with bar charts, which are plots of categorical variables.
The subtitle to this article should be a short novel on configuring the Decision Tree Tool in Alteryx. The initial configuration of the tool is very simple, but it you chose to customize the configuration of the tool at all, it can get complicated quickly. In this article, I am focusing on the configuration of the Tool. However, because it is a Tool Mastery, I am covering everything within the configuration of the tool
In statistics, standardization (sometimes called data normalization or feature scaling) refers to the process of rescaling the values of the variables in your data set so they share a common scale. Often performed as a pre-processing step, particularly for cluster analysis, standardization may be important to getting the best result in your analysis depending on your data.
Typically the first step of Cluster Analysis in Alteryx Designer, the K-Centroids Diagnostics Tool assists you to in determining an appropriate number of clusters to specify for a clustering solution in the K-Centroids Cluster Analysis Tool, given your data and specified clustering algorithm. Cluster analysis is an unsupervised learning algorithm, which means that there are no provided labels or targets for the algorithm to base its solution on. In some cases, you may know how many groups your data ought to be split into, but when this is not the case, you can use this tool to guide the number of target clusters your data most naturally divides into.
Clustering analysis has a wide variety of use cases, including harnessing spatial data for grouping stores by location, performing customer segmentation or even insurance fraud detection. Clustering analysis groups individual observations in a way that each group (cluster) contains data that are more similar to one another than the data in other groups. Included with the Predictive Tools installation, the K-Centroids Cluster Analysis Tool allows you to perform cluster analysis on a data set with the option of using three different algorithms; K-Means, K-Medians, and Neural Gas. In this Tool Mastery, we will go through the configuration and outputs of the tool.
A common concern in predictive modeling is whether a model has been overfit. In statistics, overfitting refers to the phenomena when an analytical model corresponds too closely (or exactly) to a specific data set, and therefore may fail when applied to additional data or future observations. One common method that can be used to mitigate overfitting is regularization. Regularization places controls on how large the coefficients of the predictor variables grow. In Alteryx, the option of implementing regularized regression is available for the Linear Regression and Logistic Regression Tools.
The Append Cluster Tool is effectively a Score Tool for the K-Centroids Cluster Analysis Tool. It takes the O anchor output (the model object) of the K-Centroids Cluster Analysis Tool, and a data stream (either the same data used to create the clusters, or a different data set with the same fields), and appends a cluster label to each incoming record. This Tool Mastery reviews its use.