
Empowering Knowledge Computing
with Variable Selection

On Variable Importance and Variable Selection in
Regression Random Forests and Symbolic Regression

Wouter Minnebo
Sean Stijven

Promotor:
Dr. Katya Vladislavleva

Empowering Knowledge Computing
with Variable Selection
On Variable Importance and Variable Selection in
Regression Random Forests and Symbolic Regression

Proefschrift
voorgelegd op 30 mei 2011 tot het behalen van
de graad van Master in de Wetenschappen,
bij de faculteit Wetenschappen,
aan de Universiteit Antwerpen.

Promotor:
Dr. Katya Vladislavleva

Wouter Minnebo
Sean Stijven

Acknowledgements

We express our gratitude to our promotor Katya Vladislavleva. Not only did she introduce
us to the field of evolutionary computation and computational intelligence, she convinced us
that it matters. Her desire to understand and learn inspired us to undertake the journey that
is this thesis. During this journey we became aware of the prevalent issues in modeling and
learned to appreciate elegant solutions to difficult problems. We enjoyed our discussions on
how to create a better world where thinking is global and acting is local. Her helpful comments
greatly improved this thesis. In addition we acknowledge her persistence as a driving force
that guided and advised us to share our results with the world in a conference publication.

We thank Mark Kotanchek for providing licenses of the DataModeler package, which was
extensively used and experimented with during the course of this thesis.

We thank prof. Serge Demeyer and the department of Computer Science and Mathematics
for financial support and enabling our first international academic experience.

We thank our family and friends for their support during this turbulent year.

Wouter Minnebo

Sean Stijven

May 2011

i

Samenvatting

De focus van dit proefstuk is de kwantificatie van belangrijkheid van variabelen uitgaande van
input-output data. We tonen aan dat interpretatie van de bijdragen van individuele variabelen
enkel inzicht biedt in combinatie met een kwalitatief regressie model. Het opstellen van een
regressie model wordt sterk bemoeilijkt door verschillende inherente eigenschappen van real
life problemen. De problemen die we bestuderen zijn niet-lineair, en data sets kunnen mogelijk
variabelen bevatten die niet relevant zijn. Het is waardevol een maatstaf te hebben om de
belangrijke variabelen te kunnen beschrijven, zodat variabelen in eenzelfde model onderling
vergelijkbaar zijn. Met deze informatie kunnen accuratere modellen gemaakt worden, en wordt
meer inzicht geboden in het probleem. Tot op heden is er geen algemene methode om dit aan
te pakken.

Om de belangrijkheid van variabelen na te gaan gebruiken we voornamelijk twee technieken,
random forests en symbolische regressie. Beide technieken zijn in staat data van hoge
dimensionaliteit te verwerken, maar ze verschillen sterk in hun aanpak en de modellen die ze
produceren. Random forests combineert verscheidene classificatie en regressie bomen, terwijl
symbolische regressie een populatie van algebräısche expressies evolueert.

In Hoofdstuk 2 leggen we de belangrijkheid van een variabele vast en introduceren we
eigenschappen die het mogelijk maken huidige en toekomstige methodes voor het berekenen
ervan, onderling te vergelijken.

In Hoofdstuk 3 analyseren we random forests en het algoritme in detail. We bestuderen
ook de parameter gevoeligheid van random forests aan de hand van intüıtieve voorbeelden.

In Hoofdstuk 4 wordt symbolische regressie gesitueerd in een ruimer kader van evolutionaire
algoritmen. We illustreren deze techniek op eenvoudige problemen. Ook stellen we methoden
op om belangrijkheid van variabelen te bepalen aan de hand van de expressie waar die in
voorkomt. Dit leent zich tot integratie met symbolische regressie.

In Hoofdstuk 5 voeren we verschillende experimenten uit die meer inzicht bieden in het
gedrag van de verscheidene technieken om belangrijkheid te bepalen. Ook onderzoeken we de
impact van vaak voorkomende defecten in real life data sets.

In Hoofdstuk 6 passen we de vergaarde kennis toe op twee case studies. De eerste behandelt
data verzameld door de Verenigde Naties, waarmee oorspronkelijk de Human Development
Index bepaald werd. We modelleren verschillende variabelen en identificeren invloedrijke
factoren door de belangrijkheid ervan te bepalen. De tweede case study behandelt een
industriële data set van gas chromatografie metingen van een destillatie toren.

In Hoofdstuk 7 beschrijven we de software die ontwikkeld werd in het kader van deze
thesis. In het bijzonder een C++ implementatie van random forests die via een grafische
interface te bedienen is. Onze implementatie ondersteunt parallellisatie waardoor computers
die beschikken over meerder cores de techniek sneller uitvoeren.

In de Appendices bespreken we vaak gebruikte technieken voor data analyse. Principale
componenten analyse en neurale netwerken worden in respectievelijk Appendix A en B
behandeld.

ii

Summary

The focus of this thesis is to quantify the importance of variables starting from input-output
data. We show that the interpretation of individual variable contributions is only meaningful
in context of a regression model of sufficient quality. Constructing such regression model is
hampered by several properties inherent to real life problems. The problems of interest are
non-linear, and the data sets potentially contain irrelevant variables. It is desirable to find the
driving variables by obtaining a measure relatively comparing variables from the same model.
This information would allow the creation of more accurate models, and provide invaluable
insight into the problem. At present no general method exists to acquire such measure.

We focus on obtaining variable importances using two modeling techniques, namely random
forests and symbolic regression. Both techniques are capable of modeling high dimensional non-
linear data but greatly differ in their approach and produced models. Random forests combines
several classification and regression trees, while symbolic regression evolves a population of
algebraic expressions.

In Chapter 2 we define variable importance and introduce properties by which existing
and future methods for computing variable importance can be compared.

In Chapter 3 we analyze the random forest technique down to the algorithmic details. We
also examine the sensitivity of the parameters of random forests using intuitive examples.

In Chapter 4 the symbolic regression technique is situated in the larger evolutionary
computation framework. We apply symbolic regression on practical toy problems. In addition
we propose methods for determining the importance of a variable directly from the algebraic
expression. Such methods are of interest for integration in the symbolic regression framework.

In Chapter 5 we conduct several experiments on understandable problems to provide
further insight in the behavior of different variable importance techniques. We also investigate
the impact of common defects present in real life data sets.

In Chapter 6 we apply the knowledge gained in the previous chapters to two challenging
case studies. The first one deals with data obtained by the United Nations for determining
the Human Development Index. We model several output variables and derive importances to
identify driving variables. The second case study deals with an industrial data set representing
a gas chromatography measurement of a distillation tower.

In Chapter 7 we provide details about the software developed in context of this thesis.
Notably the random forest technique is implemented in C++ and accessible through a graphical
user interface. Our implementation also supports parallelization, enabling faster execution on
multi-core machines.

In the Appendices we summarize background research on commonly used methods in data
analysis. Principal component analysis and neural networks are covered in Appendices A and
B respectively.

iii

Contents

Acknowledgements i

Samenvatting ii

Summary iii

1 Introduction 1
1.1 Motivation . 1
1.2 Regression Techniques . 3

1.2.1 Variable Types . 3
1.2.2 Notation . 3
1.2.3 Relating Regression to Classification . 4
1.2.4 Relating Regression to Optimization . 4
1.2.5 Ensemble methods . 5
1.2.6 Overview Table . 5
1.2.7 Linear Regression . 6
1.2.8 Neural Networks . 6
1.2.9 Classification and Regression Trees . 6
1.2.10 Random Forest . 7
1.2.11 Symbolic Regression . 7
1.2.12 Common Issues in Regression . 8

1.2.12.1 Model Expressiveness . 8
1.2.12.2 Model Structure . 8
1.2.12.3 Curse of Dimensionality . 9
1.2.12.4 Overfitting the Training Data 10
1.2.12.5 Imbalanced Data Sets . 10
1.2.12.6 Correlated Inputs . 10
1.2.12.7 Missing Data Values . 11
1.2.12.8 Local Optima in the Error Surface 11

1.3 Goal of the Thesis . 12
1.4 Guide to the Thesis . 13

2 What is Importance 14
2.1 Definition . 15
2.2 Notation . 16
2.3 Overview . 17
2.4 Relating Importance to Modeling . 17

iv

3 Random Forests 18
3.1 Motivation . 18
3.2 Algorithm . 18

3.2.1 Building a Tree . 18
3.2.2 Building a forest . 21
3.2.3 Parameters . 22

3.2.3.1 Random Seed . 22
3.2.3.2 Leaf Size . 22
3.2.3.3 Number of Trees . 22
3.2.3.4 Candidate Subset Size . 22

3.2.4 Examples . 23
3.2.4.1 Finding an Optimal Split in a CART 23
3.2.4.2 Tree Structure and Prediction 24
3.2.4.3 Partitioning the Input Space 25
3.2.4.4 Influence of the Random Forest Parameters 28

3.2.4.4.1 Influence of the Forest Size 30
3.2.4.4.2 Influence of the Leaf Size 31
3.2.4.4.3 Influence of Bagging 32
3.2.4.4.4 Influence of the Candidate Subset Size 33

3.2.4.5 Interpolation Example . 33
3.2.4.6 Extrapolation Example . 34

3.3 Variable Importance . 34
3.3.1 Accumulating the Gini Index . 35
3.3.2 Importance Estimation by Shuffling . 35
3.3.3 Counting the Number of Splits . 36

3.4 Properties . 37
3.4.1 Adaptive Nearest Neighbors . 37
3.4.2 Model Extrapolation . 37

3.5 Applications . 37
3.6 Summary . 37

4 Symbolic Regression 39
4.1 Motivation . 39
4.2 Algorithm . 39

4.2.1 Genetic Algorithm . 39
4.2.2 Genetic Programming . 41
4.2.3 Pareto GP . 42
4.2.4 Soft Ordinal Pareto GP . 44
4.2.5 ESSENCE algorithm . 45
4.2.6 Examples . 46

4.2.6.1 Newton’s Universal Gravitation Law 46
4.2.6.2 Defining Color Schemes . 48

4.3 Variable Importance . 50
4.3.1 Population Based VI . 50

4.3.1.1 Presence-Weighted VI . 50
4.3.1.2 Fitness-Weighted VI . 51

4.3.2 Individual Based VI . 51

v

4.3.2.1 Derivation of the Expression 51
4.3.2.2 Substitution by the Mean . 51
4.3.2.3 Variable Elimination . 52
4.3.2.4 Importance Estimation by Shuffling 52

4.4 Properties . 52
4.4.1 Model Structure . 52
4.4.2 Stopping Criteria for the Evolution . 52
4.4.3 Prediction Confidence . 53
4.4.4 Robust Model Building . 53
4.4.5 Computational Intensity . 53
4.4.6 Model Interpretability . 54

4.5 Applications . 54
4.6 Summary . 54

5 Experiments 56
5.1 Comparative Study . 57

5.1.1 Linear Model . 57
5.1.1.1 Sampling Uniformly . 57
5.1.1.2 Imbalanced Data Set . 58
5.1.1.3 Relatively Weak Variables . 59
5.1.1.4 Correlated Irrelevant Variables 60
5.1.1.5 Correlated Relevant Variables 61
5.1.1.6 Noisy Variables . 62

5.1.2 Newton’s Universal Gravitation Law . 63
5.1.2.1 Spurious Variables . 64
5.1.2.2 Imbalanced Data Set . 65
5.1.2.3 Noisy Variables . 66
5.1.2.4 Correlated Irrelevant Variables 66

5.1.3 Unwrapped Ball Function . 67
5.2 More on Random Forest . 68

5.2.1 Linear Model . 68
5.2.1.1 Imbalanced Data Set . 69
5.2.1.2 Relatively Weak Variables . 70
5.2.1.3 Correlated Irrelevant Variables 70
5.2.1.4 Correlated Relevant Variables 72

5.2.2 Newton’s Universal Gravitation Law . 73
5.3 More on Expression Trees . 74

5.3.1 Linear Model . 74
5.3.1.1 Imbalanced Data . 74
5.3.1.2 Correlated Relevant Variables 76

5.3.2 Newton’s Universal Gravitation Law . 77
5.3.3 Unwrapped Ball Function . 77

5.4 Discussion . 78
5.5 Summary . 80

vi

6 Case Studies 81
6.1 Human Development Index . 81

6.1.1 Purposeful Life . 84
6.1.2 Freedom of Choice . 84
6.1.3 GDP per Capita . 86

6.2 Tower Data . 88
6.3 Summary . 93

7 Implementation 94
7.1 Random Forest . 94
7.2 Expression Evaluator . 98

8 Conclusion 100
8.1 Research and Contributions . 100
8.2 Future Work . 101

Appendices 103

A Principal Component Analysis 104
A.1 Motivation . 104
A.2 Algorithm . 104
A.3 Example . 108
A.4 Variable Importance . 108
A.5 Applications . 109
A.6 Summary . 109

B Neural Networks 111
B.1 Motivation . 111
B.2 Algorithm . 111

B.2.1 Topology and Activation Function . 111
B.2.2 Model Training . 112

B.3 Variable Importance . 113
B.3.1 Using Model Structure . 113
B.3.2 Using Model Error . 113

B.4 Properties . 114
B.4.1 Model Evaluation . 114
B.4.2 Data Distribution . 114
B.4.3 Related Methods . 114

B.5 Applications . 115
B.6 Summary . 115

C Variable Types 116

vii

Chapter 1

Introduction

1.1 Motivation

Living in a technological age is a dream come true. We can accurately observe complex
systems, and data collection is commonplace. Scientists have more data available than ever
before and are looking for answers. Actually everyone is looking for answers to the same
questions: Now that we have all this data, how can we make sense of it? What can the data
tell us? What can we learn from it?

The amount of potential knowledge is astounding, but extracting this knowledge from the
data is far from easy. The luxury of being able to measure almost everything poses interesting
problems. For instance, interpreting data becomes increasingly difficult, the more data there
is, as illustrated by the following quotation attributed to Lee Segall: ‘A man with one watch
knows what time it is, a man with two watches is never quite sure’.

A primary goal when observing complex systems is to describe the system in function
of the observed factors. To ensure that this will be possible, one will typically measure too
many factors rather than too few. The main problem is no longer what to measure but rather
how to interpret many measurements, knowing that some factors might not be contributing
to system understanding. This approach can yield vast data sets, which are seldom readily
interpretable.

As the adage ‘A picture is worth a thousand words’ suggests, interpreting data is largely a
matter of representation. In other words the aim is to first find a suitable representation of the
data, and interpret that representation instead of the raw data. Creating such representation
is one of the primary motivations for modeling. A model describes a transformation of the
input parameters corresponding to observed factors to a response corresponding to system
behavior. If the response of a model is truthful to the system under study, conclusions based
on that model are valid for the system as well. We argue that it is the model that explains
the data by making meaningful interpretations possible.

Most modeling techniques assume that all input parameters contain information, and
include all input parameters in the resulting model. This assumption is not always realistic in
an experimental setting where the observed process might not be well-understood. In order to
apply these modeling techniques in such a setting, one must first perform feature selection.

Feature selection techniques extract a subset of the original variables, discarding variables
that hold no useful information. For example multiple models could be build, using different
subsets of input parameters until a satisfactory model is found. This relies on the fact that

1

Chapter 1. Introduction – Motivation 2

a model of sufficient quality can not be build if an important variable is missing, and the
model quality will deteriorate quickly if meaningless features are added. Remark how the
usefulness of a variable is directly related to the modeling technique. In theory this approach
is applicable to all modeling techniques. However, selecting the subsets to consider is a
non-trivial practical issue. If no assumptions can be made, even the size of the optimal subset
is unknown, leading to many possible variable combinations. Since considering a subset results
in rebuilding the model, this incurs a serious computational investment. It is therefore of
interest to strategically choose which subsets to consider. Two traditional approaches are
forward selection and backward elimination. In forward selection the size of the subset is
iteratively increased by one. Variables are added such that the subset produces the best
model with dimensionality equal to the subset size, until no further improvement is observed.
Backward elimination works the other way around, starting from the full variable set and
iteratively removing the variable with the least impact on the response until the model quality
is considered insufficient.

A related class of techniques are known as dimensionality reduction techniques. Here the
goal is to find a lower dimensional representation of the original data. While this is different
from feature selection, the two terms are sometimes used interchangeably in the literature. In
this thesis we use the terms as described in this section to avoid confusion.

Many modeling techniques were designed to represent data compactly and deliver accurate
models. Since we are interested in understanding the process under observation, it remains
paramount to gain insight in the contributions of parameters, as to identify the driving factors
of the process. We argue that even the most accurate model does not directly improve problem
understanding if it can not provide an interpretable measure of importance for each of its
variables. The uninterpretable black box that is the process would merely be replaced by an
equally uninterpretable model.

Determining when a variable can be considered important in context of a given model is
the core topic in this thesis. We will treat a variable as important if its presence or absence
in the model matters, not unlike the feature selection techniques. However, some subtleties
must be addressed, specifically inter-dependent variables. These are variables which only hold
information if combined with other variables. In other words, such variables by themselves are
unable to provide any predictive power, it is only by a combination they can provide insight.
A traditional example of such inter-dependency is the XOR1 problem, also discussed in [32].
For that problem a prediction based on any one input variable will not perform better than
randomly selecting an output value. For feature selection algorithms such as forward selection,
inter-dependent variables can be problematic. Using forward selection, any one variable of an
inter-dependent set of variables will never be added to the subset, since it does not directly
improve prediction results.

The knowledge gained from variable importance is key to process optimization. If after a
series of exploratory experiments the variables’ influences are discovered, future efforts can be
focused on the meaningful aspects of the process. Not only does this catalyze further progress,
but it can very well result in significant monetary savings or earnings. For instance, once
variables are known to be unrelated to the process behavior, it will no longer be necessary to
measure them.

1The XOR problem is also known as the two-bit parity problem.

Chapter 1. Introduction – Regression Techniques 3

1.2 Regression Techniques

Regression techniques are designed to solve so called regression problems. Any regression
problem consists of describing a mapping of several input variables to one or more output
variables. This is an instance of supervised learning, where it is known which variable to
predict. This contrasts with unsupervised learning, were techniques aim to discover novelties
or patterns in the data without the prior separation of input and output. Input variables
are also known in the literature as predictors, features or attributes, while output variables
are called responses. We will use these terms interchangeably. The mapping constructed
by a regression technique is formalized into a model, and this model is able to predict the
response(s) using the input variables.

In this thesis we focus on regression techniques which we will later use to discuss and
analyze variable importance in different settings. The covered material is not meant to be
exhaustive and we refer to the literature for other techniques [97]. The techniques we used
will be informally introduced in the remainder of this section. Future chapters will cover each
technique separately in more detail.

1.2.1 Variable Types

Not all variables can be treated equally. Intuitively a variable assuming values from the set
S = {Kitten, Puppy,Goldfish} will be handled entirely different than a variable assuming
values in the set of real numbers R. In this thesis we only consider continuous variables, and
we refer to Appendix C for a discussion on other variable types.

1.2.2 Notation

To make further formalizations possible we will first introduce some notational conventions
followed throughout the thesis. We will denote a functional relation as:

f(x) = y, where x ∈ Rd, y ∈ R (1.1)

The data set is then represented as an n× d input matrix X, and an n× 1 output vector Y .
Variable i will be denoted by xi for i = 1, . . . , d. The j th observation is denoted by xj for
j = 1, . . . , n. A specific data value in X will be denoted by xji such that i is the variable index,
and j is the observation number. Analogous conventions will be used for Y .

Now we can formalize regression as follows: given a data set {X,Y } with an unknown
relationship f such that f(X) = Y , construct a predictor f̂ : Rd 7→ R such that:

f̂(x) = f̂(x1, . . . , xd) = ŷ, where ŷj ≈ yj for j = 1, . . . , n (1.2)

In other words the model prediction should approximate the original relation. The quality
of this approximation is determined by an error or loss function L(y, ŷ), such that L is
large when the prediction is poor. The squared error is commonly used as a loss function:
L(y, ŷ) = ‖y − ŷ‖2. The mean sum of square errors on the data set estimates the expected
value of this loss function:

MSE =
1

n

n∑
j=1

(yj − ŷj)2 (1.3)

Chapter 1. Introduction – Regression Techniques 4

A regression model will minimize the expected error, given a loss function. Remark that there
could be more than one output variable, in which case the output is denoted by the vector
y = (ym, . . . , ym)T , and Y will be an n×m matrix. In this thesis we only consider the case
with one output variable.

Ensemble methods will use a set of models for prediction, which we will denote by
M = {M1, . . . ,Ms}. The prediction of an ensemble method is then formalized as a combination
of the predictions by individual models:

f̂(M,x) = C(Mi(x)), for i = 1, . . . , s (1.4)

where C is a function combining individual predictions. Often C will be a weighted sum, such
that we can write:

f̂(M,x) =
s∑
i=1

wiMi(x) (1.5)

1.2.3 Relating Regression to Classification

While regression deals with output variables with an infinite number of possible values,
classification treats problems where the domain of the output variable is a finite set. In a
classification context the output variable is referred to as the class label. In other words, the
classification problem consists of assigning labels to input points, or inferring the class, given
a set of attributes. Regression is sometimes seen as an extension from classification, in the
sense that it would be a classification problem with infinite output classes. While this seems
plausible at first, assumptions made by classification techniques do not always generalize well
to regression problems. Most often, classification focuses on discovering decision boundaries
separating the output classes, instead of a more direct approximation of the response such as
found in regression.

1.2.4 Relating Regression to Optimization

While regression techniques construct models to approximate the underlying relation between
input and output variables, optimization techniques find minima or maxima of arbitrary
functions. We already stated that a regression model minimizes the expected error, such that
ŷi ≈ yi. This allows regression problems to be reformulated as optimization problems given
an error function. We note that apart from the MSE, the sum of the squared errors (SSE),
and the root mean square error (RMSE) can also be minimization targets:

SSE =
n∑
i=1

(yi − f̂(xi))2 MSE =
1

n
SSE RMSE =

√
MSE (1.6)

Most regression techniques define a class of models. Constructing an optimal model is then
equivalent to minimizing one or more error functions over all models within this class. Remark
that not all modeling techniques use the same error function, although the RMSE is widely
used. This concept of optimization is applied once the model structure is known, and a set of
model parameters is to be optimized.

Remark that the minimization of the prediction error can be a non-convex optimization
problem, such that convergence to a global optimum is not guaranteed. In particular the
search space may contain local optima, which some optimization techniques identify as the

Chapter 1. Introduction – Regression Techniques 5

solution, yielding suboptimal results. Navigating such search spaces is a challenge that calls
for sophisticated optimization techniques. Issues prevalent in optimization are also of interest
for regression. The specific issue of local minima will be revisited in Section 1.2.12.8.

1.2.5 Ensemble methods

While many modeling techniques provide a single model of high accuracy, another approach
is to base predictions on a model ensemble, a collection of multiple models. Predictions of
individual models are combined in a meaningful way to provide an accuracy expected to
surpass any single model in the ensemble. For example in classification problems it is common
to build several models, and let each model then ‘vote’ for a predicted class label. The class
label which receives the most votes will then be accepted as the final solution. The advantage
of combining multiple models is that not every model must be equally accurate in the whole
input range, as long as the majority of models is of sufficient quality. Since creating models of
lower quality is typically less computationally intensive than creating high quality models,
this approach could potentially save computational resources. Remark that individual models
in the ensemble are not required to approximate the whole input space with high accuracy.
However, for this approach to work, individual models should at least be accurate in a region
of the input space.

1.2.6 Overview Table

Linear Neural Random Symbolic

Regression Networks Forests Regression

Knowledge about explicit model
structure required

Yes No No No

Parametric or Non-parametric Param. Param. Non-param. Non-param.

Possibility for Local Adaptation No No(1) Yes No

Model complexity depends on the
of data samples

No No(1) Yes No

Potential to create compact mod-
els irrespectively of data size and
structure

High(2) Limited Limited High

Can final models provide insight
into the problem, and increase
system understanding

Yes Hardly Hardly Yes

Complexity control possible Yes Yes Yes Yes

Danger to over-fit the data with-
out explicit complexity control?

No High Limited No

Danger of having insignificant
variables in final models

Present Present Present Not Present,
or Heavily
Reduced

Danger of NOT having significant
variables in final models

Not Present Present Present Present

Table 1.1: Overview of the properties of different modeling methods, as described in [116].
(1) Yes, for radial basis function neural nets.
(2) If the model structure is correct.

Chapter 1. Introduction – Regression Techniques 6

1.2.7 Linear Regression

A linear least square model predicts the output variable by considering a linear combination
of the input variables, such that the SSE with respect to the original data is minimal. In other
words fitting such a model is equivalent to the optimization of parameters wi for i = 0, . . . , d
using the model structure:

f̂(x) =
d∑
i=1

wixi + w0

This can also be formulated as the solution to a linear set of equations, by introducing the
so-called design matrix A:

A = (1 X), where 1 = (1, 1, . . . , 1)T

The set of linear equations, also called normal equations, is then given by:

ATAw = AT y, where w = (w0, w1, . . . , wd)
T

Solving for w yields the coefficients of the linear model. Remark that this approach can be
generalized further by using basis functions. For example it could also be used for fitting
polynomial models.

1.2.8 Neural Networks

Neural networks are inspired by the operation of the human brain. The behavior of biological
neurons is mimicked by simple artificial representations. Multiple neurons are interconnected
and organized in a directional network, as shown in Figure 1.1. Each neuron performs an
operation on a weighted combination of its inputs, this operation is known as the activation
function. An activation function produces an output value, such that propagating input
values through the network yields a prediction for the output variables. This transformation
is defined by the combination of the network topology, connection weights and activation
function, ie. the functional relationship between input and output is modeled by the network.
This implies that an explicit analytical form for the model might not be readily available.
Typically, the topology and activation function are chosen depending on model requirements
such as non-linearity. Optimal connection weights are then determined such that the model
prediction error is minimized.

We refer to Appendix B for a summary of our background research on neural networks.

1.2.9 Classification and Regression Trees

Classification and regression trees (CART) are closely related to decision trees. While a
decision tree represents a series of questions branching for each meaningful answer, a CART
inspects a property of the data and branches for each possible outcome. Without loss of
generality we only discuss trees involving binary decisions. This restricts answers to questions
in decision trees or CARTS to either ‘yes’ or ‘no’, as shown in Figure 1.2. While decision trees
are intuitively interpretable, this property is less evident for a CART. In order to construct a
good decision tree it is essential to ask the right questions. Analogously the construction of an
optimal CART, with highest predictive accuracy, consists of finding optimal data properties.
For more information on how to construct a CART we refer to Section 3.2.1.

Chapter 1. Introduction – Regression Techniques 7

x
1

x
2

x
d

y
1

y
2

y
m

Figure 1.1: An example of a neural network with
one hidden layer. Each arrow indicates a connec-
tion, with an associated weight. At every internal
node a function is performed on the combination of
incoming connections, producing one output value.
Remark that the network does not need to be fully
connected as depicted here.

x 1 < 5

x2<2 . 5

ye s

7

no

2

yes

3

no

Figure 1.2: An example of a
very simple CART. A pre-
diction value is present in
the leaf nodes, the predic-
tion path through the tree is
determined by data charac-
teristics tested in each node.

1.2.10 Random Forest

From the simple regression tree shown in Figure 1.2 it is intuitively clear that a single tree
does not approximate smooth functions well. Random forest (RF) improves the approximation
of smooth functions by combining multiple regression trees in an ensemble. However, the
construction of an optimal regression tree is deterministic, such that there would only be
one tree for any given data set. However, suboptimal trees are not unique and individuals in
an ensemble are not required to be optimal. By introducing a random component RF will
create an ensemble of several suboptimal trees. This will enable the approximation of smooth
functions, while remaining computationally feasible. In addition this technique can be used for
both regression and classification tasks, and provides several variable importance measures.

We study this technique extensively in Chapter 3.

1.2.11 Symbolic Regression

Symbolic regression (SR) is a genetic programming technique where no assumption is made
about model structure, and all models are explicit algebraic expressions. While the number of
possible algebraic expressions for a given set of variables is infinite, SR aims to find optimal
expressions. Algebraic expressions can be represented as a parse tree, as shown in Figure 1.3.
In SR, a population of models is created, where each model is represented as a parse tree.
This population evolves by strategically manipulating the parse trees, such that the model
quality gradually improves. This involves the trade-off between model accuracy and model

Chapter 1. Introduction – Regression Techniques 8

complexity. Multiple models within a population can be optimal with respect to this trade-off,
and a final solution consists of such optimal models. One can then either combine all optimal
models, or a subset, in an ensemble.

We study this technique extensively in Chapter 4.

*

+ /

- x 2

x1 5

x3 2

Figure 1.3: An example of a parse tree for the expression (x1 − 5 + x2)
x3
2 . Symbolic

regression will construct a population of parse trees, which gradually evolve to optimal
algebraic expressions expressing the functional input-output relationship of the data.

1.2.12 Common Issues in Regression

1.2.12.1 Model Expressiveness

This issue is inherent to any modeling approach, and not specific to any technique in particular.
Since a model represents an unknown underlying relation between input and output variables,
such a relationship is expected to exist in the first place. In other words the ‘Garbage in,
garbage out’ principle is certainly applicable in regression. While it would be interesting if
the next winning lottery numbers could be predicted from ones shoe size, this does not make
sense. For this trivial example it is obvious that the shoe size will not contain any valuable
information, but this intuitive approach does not scale well.

The actual issue is that in order to construct a good model, the contributing factors should
be known. In other words the relevance of variables is expected to be known in advance. This
assumption does not hold in an experimental setting since the behavior of the system is a
priori unknown. Even when a good model is available, understanding the variable importances
of all inputs is of great interest since it could simplify future models and observations. In
addition, variable importances are instrumental to gain insight into both the model and the
process under study.

1.2.12.2 Model Structure

Many modeling techniques rely on the relationship between regression and optimization to
construct the model. This readily implies that the model structure should be known in
advance, otherwise it is not possible to formulate an explicit optimization problem in function
of the model parameters. In reality the optimal model structure is often unknown, even with
extensive domain knowledge. Also note the conflict of interest with respect to model structure
complexity: It is desirable that a model is simple, so interpretation is straightforward, while

Chapter 1. Introduction – Regression Techniques 9

it should remain complex enough to capture the behavior under study. In other words, the
model should be as simple as possible but not simpler.

1.2.12.3 Curse of Dimensionality

To see the impact of dimensionality on problem understanding, consider the input variables
in a d-dimensional space. Now suppose we want this space to be sampled on a lattice with
a certain density, ie. the number of points per unit volume. Let us start by sampling the
unit interval with 10 equidistantly spaced points, and generalize to higher dimensionality. If
we want to sample the two dimensional space with the same density, it would require 102

points. Analogously a three dimensional space, where sampling with the same density would
require 103 points. Remark that the increase in required data is exponential with respect
to the dimensionality, see also Figure 1.4 for a visual representation. The amount of data
available can thus be counterintuitive, for example a data set of ten variables will still be a
sparsely sampled input space when 105 records are available.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Figure 1.4: The unit interval, square and cube sampled with equal densities. The number of
points needed to accomplish this increases exponentially.

Traditional metrics such as the Euclidean distance also behave counter-intuitively in
high dimensional space [3]. In addition, the volume of the ‘center’ of the space decreases
dramatically. This can be observed by generalizing the proportion of the volume of a circle
inscribed in a square to the volume of that square as shown in Figure 1.5. In a d-dimensional
space we compare the volume of a hypersphere with radius r to that of a hypercube with sides
of length 2r. The volume of the hypersphere is given by:

Vhypersphere =
2rdπd/2

dΓ(d/2)
, where Γ is the Gamma function. (1.7)

And the volume of the hypercube is given by:

Vhypercube = (2r)d (1.8)

It then becomes apparent that the hypersphere becomes an insignificant volume relative to
the hypercube:

lim
d→∞

Vhypersphere
Vhypercube

=
πd/2

d2d−1Γ(d/2)
= 0 (1.9)

In other words, any random point in a high dimensional space is more likely to be close to a
boundary of that space than in the center of that space.

Chapter 1. Introduction – Regression Techniques 10

Figure 1.5: Visualization of the ‘center’ of a space in two and three dimensions, the circle and
sphere respectively. The ratio of volumes of this ‘center’ compared to the full space will be of
interest and is shown in Equation 1.9 to converge to zero with increasing dimensionality.

1.2.12.4 Overfitting the Training Data

Overfitting is the phenomenon occurring when a model has a low prediction error on data it
has been trained with, but fails to generalize predictions to unseen input values. An extreme
case would be a black box model that would explicitly store the data set, producing the known
output if the input values are in the data set and an arbitrary value otherwise. Overfitting
can be caused by several issues, for example an overly complex model structure.

1.2.12.5 Imbalanced Data Sets

Closely related to the curse of dimensionality is the issue of imbalanced data, when some
areas of the input space are overrepresented such as shown in Figure 1.6. Since common error
functions such as the SSE will sum the errors over all points, small errors in an oversampled
area will be inflated due to large number of points in that area. In practice the resulting
models will overfit in the oversampled areas, and accuracy will deteriorate in other areas.
Remark that the problem is more complicated than sketched here, since it is, for example,
desirable to sample proportional to the change in response in an area. A recent summary of
available techniques in classification is given in [37, 16, 20], as well as a clear discussion on the
problem. In [116] this topic is covered extensively in a regression setting.

A related and important research question is how to choose the sample points prior to the
actual measurements. Although this topic is not elaborated further in this thesis we want to
refer the interested reader to design of experiments [95] and space-filling designs [113].

1.2.12.6 Correlated Inputs

Formally the linear correlation between two random variables x1 and x2 is defined as:

ρx1,x2 =
E[(x1 − µ1)(x2 − µ2)]

σ1σ2
, with µi the mean and σi standard deviation

Conceptually correlated input variables occur when information is replicated across several
variables, which is not limited to linear correlation. The problem is that the extra input
dimensions they create are meaningless. For example if one variable is a multiple of another

Chapter 1. Introduction – Regression Techniques 11

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 1.6: Both images contain the same number of data points. On the left an example
of an unbalanced data set, on the right an example of a random uniform sampling. Remark
that in some cases the data set on the left is preferred if the response behaves wildly in the
oversampled areas.

variable, the same information could be represented by a single variable. Such meaningless
dimensions increase the curse of dimensionality effect, which is to be avoided. In addition
modeling techniques relying on optimization are affected as well. The optimization is consider-
ably more difficult the higher the dimensionality, indicating that modeling a data set with
highly correlated variables may produce poor models.

1.2.12.7 Missing Data Values

While already noted in Section 1.2.12.1 an underlying relation can only be adequately modeled
if all contributing variables are present in the data set. Yet even if all variables are present,
not all values might be available for all data records. For example suppose we are interested
in five variables but are restricted to measuring only four variables at any given time due to
external requirements. All data collected during such experiments will have an unknown value
in one dimension. Unfortunately there is no universal solution to handle missing values. A
statistical analysis of this problem is given in [71].

1.2.12.8 Local Optima in the Error Surface

In Section 1.2.4 we mentioned that regression problems can be reformulated as optimization
problems, and local optima can be problematic when the solution to an optimization problem
as found by an optimization technique is not a global optimum. Such solution is only optimal
in a neighborhood surrounding it. The presence of local optima is dependent on the function
to optimize, and the impact they have on the final solution depends on the optimization
technique. To illustrate how this can be a problem we briefly explain the steepest descent
method.

With steepest descent a function is optimized iteratively by following a trajectory in the
input space, such that every step is advancing towards the optimum. Starting at a point
input space, the gradient in that point is calculated. The next point to consider lies in the
direction of the negative gradient, thus descending as fast as possible. It is not hard to imagine

Chapter 1. Introduction – Goal of the Thesis 12

a function where the steepest descent approach will be stuck in a local optimum, as shown in
Figure 1.7. This illustrates that the choice of optimization technique will be instrumental in
finding good models.

−30 −20 −10 0 10 20 30
0

0.5

1

1.5

−2

0

2

−2
0

2

−10

−5

0

5

Figure 1.7: Two examples of a local minima where steepest descent would be stuck. In a local
neighborhood this minima will be optimal, but the global optima is some distance away.

1.3 Goal of the Thesis

Our primary goal is to gain understanding about variable importance, guided by comparative
experimental results. To that end we provide an overview with a selection of available methods.
In particular we discuss how these methods differ conceptually and why it matters. We believe
this to be fundamental for interpreting both models and variable importances obtained with
these methods. While a formal discussion is beyond the scope of this thesis, we refer to the
literature where applicable. So while not all aspects are discussed here, we provide useful
references for the interested reader. We focus on two methods in particular: random forests
and symbolic regression.

We can not stress enough that insight in a modeling technique and the resulting model(s)
is paramount to understanding variable importances for the resulting model(s). To that end
we present an extensive analysis of RF since this technique is widely used in many research
fields for obtaining variable importance.

In summary we aim to raise awareness in important issues related to modeling and variable
importance illustrated by experimental results, and inspire future researchers to continue the
quest for knowledge.

Chapter 1. Introduction – Guide to the Thesis 13

1.4 Guide to the Thesis

We found that enumerating the chapters in sequential order is not optimal for representing the
structure of this thesis. We reveal interconnections between chapters on a mind map, shown
in Figure 1.8.

Figure 1.8: A mind map depicting the interconnections between different chapters of this
thesis.

In the next chapter, the thesis addresses a core question: ‘What is importance?’. We learn
that importance in regression is only meaningful in context of a sufficient model. This is the
motivation to examine two modeling methods in detail.

Both methods greatly differ in their approach and produced models. Random forests com-
bines several classification and regression trees, while symbolic regression evolves a population
of algebraic expressions. Random forests is analyzed in Chapter 3, and symbolic regression is
studied in Chapter 4.

We also researched commonly used methods in data analysis, principal component analysis
and neural networks. They are summarized in Appendix A and B respectively.

Several experiments that increased our understanding of the variable importance properties
of random forests and symbolic regression are discussed in Chapter 5. Using the insight
gained from these experiments we proceed to determine variable importances for two real-life
problems in Chapter 6.

In order to perform both the experiments and case studies, we developed software compo-
nents. We describe this implementation in Chapter 7.

This thesis concludes in Chapter 8 were the research and contributions are summarized,
and future work is outlined.

Chapter 2

What is Importance

Using the term variable importance (VI) is not sufficient to express the different aspects of
importance. This chapter explores different points of view, and provides context for later
discussions.

Feature selection (FS) aims to extract a subset of features. Feature selection could be
viewed as quantification of importance by assigning a score of either zero or one to variables,
indicating whether to select them or not. But when we talk about VI we mean a quantification of
importance such that scores of different variables are mutually comparable. Once importances
are determined they could be used to perform FS, but it is assumed the quantification will be
more informative than the subset presented by a FS technique. Even though the approaches
are different, results should at least be consistent. In other words variables selected by FS
should receive a high VI score, and conversely variables with highest VI score should be
selected by FS.

We distinguish between methods computing either an absolute or relative importance.
We use the term relative importance if the value is only interpretable in combination with
importance values of other variables. In contrast, an absolute importance would also be
interpretable in its own right, independently of the values for other variables.

In general variable selection algorithms come in three varieties: filter, wrapper and embedded
methods [32, 55]. A filter method relies only on the characteristics or structure of the data
and will determine importances without explicitly building any models. Wrapper methods
are applicable when a sufficient model is already found and will estimate variable importance
based on model evaluation. An embedded method determines variable importance during the
model building process, typically resulting in a form of automatic feature selection guiding
the modeling process.

We argue that filter methods can be used as preprocessing to remove some variables
completely unrelated to the response. Although they will provide no further insight in
the remaining variables since a meaningful interpretation of their contribution requires a
model. While wrapper methods do use models, they handle it as if it were a black box
simulation. Implying they are by definition constrained by the model they operate on,
reflecting the limitations of the modeling engine. Embedded methods are beneficial since some
VI information is used during model construction. Remark that this information will not be
complete during model construction, but can serve as an indicator for the modeling technique.
In addition embedded methods determine VI during model building. This removes the need
to remodel excessively when the goal is to select a suitable variable subset, in contrast with

14

Chapter 2. What is Importance – Definition 15

the forward selection or backward elimination FS techniques.
In summary, we distinguish methods either determining absolute or relative importances,

optionally building and rebuilding models, as shown in Figure 2.1.

Absolute

Impor tance

Relative

Data Driven Model Driven

With Remodeling Without Remodeling

Figure 2.1: Different approaches of determining variable importances. Importance can be
either absolute or relative, and is derived using either only the data or using models. If models
are used, they can optionally be rebuild while determining the variable importances.

2.1 Definition

In our definition, something is important if its presence or absence matters. In other words
the measure of importance is proportional to the change resulting from presence or absence.
The importance of an input variable is determined by its power to both explain and predict
the behavior of the system under study, i.e. the behavior of the response variable.

The importance of a variable can only be reliably interpreted given a functional relationship
between the inputs and the response. A straightforward approach would be to determine the
partial derivative of the model, and see how it varies across the input space:

Ii(y,x) =
∂f̂

∂xi
(x) (2.1)

An input variable is not important if it does not cause any change in the response, i.e. the
partial derivative of the model over this variable (if it exists) is zero across the entire input
space. Remark that the partial derivative is by definition a local property in case of nonlinear
models. Consequently, variable importance should also be treated as a local property.

In practice, variable importance is estimated through sensitivity analysis. It is defined as
the observed change in the response for when the value of that variable is varied while fixing
the other variables to one of several configurations. The problem is that unless input-response
models are given analytically as continuous differentiable functions, the sensitivity analysis
must be performed by manually exploring the behavior of the response with little if at all
quantification of importance. In this thesis we explore different approaches to sensitivity
analysis in search for a method providing reliable importances.

Our aim is to build global models for a data set. Therefore, we are primarily interested in
the variable importance over the whole input domain, given a model. In other words with

Chapter 2. What is Importance – Notation 16

variable importance we want to express the global influence of a variable instead of the local
influence. To that end local importances are accumulated:

Ii(y) =
n∑
k=1

∣∣∣∣∣ ∂f̂∂xi (xk)
∣∣∣∣∣ (2.2)

In addition we should confront another problem: are the variables present in optimal
models that minimize the prediction error per se relevant to the problem? As it turns out
not all such variables provide insight into problem understanding [55], and this distinction is
highly dependent on the modeling technique. This can be an issue when using FS techniques,
where the prediction error is the only available measure. The definition of importance we use
will take the individual contribution to the response into account instead of only the total
prediction error.

There is no universally acceptable method available to perform variable importance analysis.
However, we identify several properties which would be present in a good VI method, and by
which existing methods can be compared:

• Interpretability–Obtained importances should reflect the importances of the true
input variables, without transformation.

• Strictness–Only variables relevant to describing the response should be allocated
importances, so spurious variables should not appear important.

• Conservativeness–At intermediate stages of importance analysis all potentially inter-
esting variables should receive importance.

• Reproducibility–A result can only be considered correct if it is reproducible.

• Universality–It is desirable for importances to be mutually comparable, and in addition
to be problem independent.

2.2 Notation

More formally we will describe VI depending on which type of method was used to obtain it.
In case of a filter methods:

Ii = I(xi | X,Y) (2.3)

In case of a wrapper method:

Ii = I(xi |M,X, Y), where M a model or model set M (2.4)

Embedded methods can in general be described as:

Ii = I(xi | method,X, Y) (2.5)

Chapter 2. What is Importance – Overview 17

2.3 Overview

We compiled Table 2.1 to provide an overview of the properties discussed in Section 2.1 for
different VI methods. Note that the table reflects conclusions from our experiments, detailed
in Chapter 5.

Interpretable Strict Conservative Reproducible Universal

Linear models yes yes yes(1) yes yes

PCA no maybe(2) maybe(2) yes no

Neural Networks yes maybe(2) maybe(2) yes no
Random Forests yes no no yes no

Symbolic Regression yes yes yes yes(3) yes

Table 2.1: Overview of properties by different variable importance methods.
(1) If the model structure is correct.
(2) If the technique is applicable.
(3) Given enough time.

2.4 Relating Importance to Modeling

We already mentioned that the importance of variables can only be interpreted in function of
a model. Perhaps surprisingly, variable importances are also valuable to the modeling process.
Not only do they grant embedded methods guidelines for generating good models, but VI can
also be instrumental in model verification. If extensive domain knowledge is available such
that relevant variables are known in advance, even models achieving a low prediction error
can be safely rejected if they do not incorporate these relevant variables. A situation where
all relevant variables are known in advance is of course highly artificial and would remove the
need to use VI methods. However, in practice it is not uncommon that a small subset of the
variables is known to be relevant. Remark that if known relevant variables do not have a high
VI score, this is either an indication that the modeling technique is not expressive enough, or
the produces model is not sufficient, or that the expected relationship is simply not captured
by the data.

Chapter 3

Random Forests

3.1 Motivation

The random forest (RF) technique was introduced by Breiman [13] as an ensemble of clas-
sification and regression trees (CART). We found RF to be an attractive method since it
can handle large data sets of high dimensionality, and is applicable to either classification
or regression problems. It is also one of the more accessible methods, in the sense that the
algorithm and reasoning is rather intuitive. An accessible treatment is also provided in [99],
for a formal treatment we refer to [9]. In addition RF is praised for its robustness, especially
when dealing with data sets of very high dimensions such as gene expression data [5, 23]. This
desirable quality is due to a VI scheme incorporated in the modeling technique, which we will
examine as well.

3.2 Algorithm

3.2.1 Building a Tree

Once constructed, a CART represents a specific partitioning of the input space. Consider the
root node to contain the full data set, and each child of the node to contain the partition of
the data set satisfying the test imposed by that node. The construction of a tree starts at the
root, where we have to determine a test suitable to partition the data in two groups. We only
deal with binary trees, so we are restricted in this choice since the answer to this test should be
either ‘yes’ or ‘no’. Even with this restriction, tests such as xi = xj or xi < xj ∗ xk would be
possible. Breiman also introduced RF techniques where the combination of variables is allowed
[13], but we consider the version where a single variable is compared with a constant. In
other words, the only splits allowed are of the form xi < c where c is a constant known as the
decision value, and xi is known as the decision variable. Even though this additional restriction
is limiting, testing every variable xi for i = 1, . . . , d remains infeasible when handling high
dimensional data sets.

At every inner node j a candidate variable set Vj = {xk} is selected randomly such that
k ∈ {1, . . . , d} and |Vj | = K where K is typically much smaller than d. For each variable
within this candidate set the optimal value for c is determined by consulting an information
gain criterion G(xk, c,X, Y). The considered values for c are the midpoints of two sequential

18

Chapter 3. Random Forests – Algorithm 19

values in the sorted values of variable k, formally c will be a member of set C:

C = {x̂ik +
x̂i+1
k − x̂ik

2
| i ∈ {1, . . . , n− 1}} (3.1)

where x̂k are the sorted values of xk.
The split in that node will be determined by xk < c such that G(xk, c,X, Y) is maximal.

The two child nodes will receive their share of the data partition according to the test result
in the parent node, and will recursively partition it further.

This splitting process is applied until the partition is sufficiently small, or the information
gain criterion signals that further splitting will not provide additional predictive power. This
recursive partitioning can be seen as a special form of stepwise regression [8]. A node which is
not split further is called a leaf node. The number of points remaining in a leaf is known as
the leaf size, and is a parameter to the RF algorithm. Remark that a leaf can still contain
more than leaf size elements in case the splitting criterion indicated splitting further is not
useful. The impact of the leaf size will be inspected in Section 3.2.3.2. The construction of a
tree is also shown in Algorithm 1.

Algorithm 1 ConstructTree(currentPartition)

if |currentPartition| > leafSize then
Vj ← {xk} such that k ∈ {1, . . . , d} and |V| = K
for all xk ∈ V do

for all c ∈ C do
Gk,c = G(xk, c,X, Y)

split ← max(Gk,c)
left, right ← Partition(CurrentPartition, split)
ConstructTree(left)
ConstructTree(right)

A crucial element in the tree construction as explained above is the information gain
criterion G. It is by this measure that the node splits will be determined, thus affecting the
whole tree structure. The criterion used in RF is computed as follows: Consider the partition
P to split, and take the squared sum of the response variable divided by the size of P to be
the baseline. For each split of a given variable xi and constant c, compute the squared sum
of each child divided by their size and add them. The best split is then defined as the split
that differs most from the baseline, causing the newly created partitions to be as similar as
possible in the response variable. More formally, let G be:

G(xk, c,Xp, Yp) =
1

|L|

(∑
i∈L

yi

)2

+
1

|R|

(∑
i∈R

yi

)2

− 1

|P |

(∑
i∈P

yi

)2

(3.2)

where L = {i | xik < c} and R = {i | xik ≥ c}. Remark that G is directly derived from the
original Fortran implementation [11], also consistent with the latest version of the random
forest package in R [69].

Now trees can be constructed, let us take a look at their predictions and how it is affected
by the choices made at the splitting stage of the algorithm. The prediction of a tree is
determined by starting in the root node of the tree, checking the decision variable and value.

Chapter 3. Random Forests – Algorithm 20

The next node to consider is the node to which the input point would have been assigned
during partitioning. This effectively creates a path from the root node to a leaf node. The
prediction of a tree for any input point is the average of the training points in the leaf node
reached by following such path. This prediction algorithm is also shown in Algorithm 2. From
the restrictions on the splits in a node, we observe that the prediction of a single tree will
be a multidimensional step function, as shown in Figure 3.1. Furthermore, each node will
introduce a discontinuity in the dimension of the decision variable at the decision value. Also
remark, that a prediction path is sequential, meaning that splits imposed at internal nodes
apply to points satisfying all earlier splits. In other words, RF captures interactions between
variables, because the value of one variable can influence future splits on other variables.

Interpretable visualizations of a tree prediction is only possible for problems of low
dimensionality. Visualization of a tree prediction on a two dimensional problem is constructive
for later discussions, and is provided in the examples in Section 3.2.4.

Algorithm 2 Prediction of a Tree

currentNode ← root
while (isNoLeafNode(currentNode)) do

P ← currentNodepartition
k ← currentNodedecisionVariable
v ← currentNodedecisionValue
low ← currentNodeChild, ∀p ∈ P : pk < v
high ← currentNodeChild,∀p ∈ P : pk ≥ v
if (xk < v) then

currentNode ← low
else

currentNode ← high
end while
return currentNodeprediction

−2 0 2 4 6
−1

−0.5

0

0.5

1
Random Forest Prediction

true function
samples
single tree
50 trees

Figure 3.1: The smooth function is sampled at the dots. The coarse stepwise line represents
the prediction of a single tree, while the finer stepwise line indicates the prediction of a forest
of 50 trees.

Chapter 3. Random Forests – Algorithm 21

3.2.2 Building a forest

Since RF is an ensemble method, the prediction of multiple trees will contribute to the model
prediction. In Section 3.2.1 we observed that a single tree would be a poor approximation of
a smooth function. By combining many step functions the approximation can be shown to
converge to smooth functions [13].

In order to achieve this smoothness individual trees should be sufficiently diverse, implying
their prediction should be different. This might be counterintuitive since each individual tree
also models the data set, so why should their predictions be different? Consider what happens
if very similar trees are combined: Since the decision values will be almost the same, the
stepwise behavior of the prediction will be strongly encouraged. Consequently, smoothness
would never be achieved. So the question becomes how to ensure tree diversity while not
compromising model accuracy to a degree where individual trees become unusable. Breiman
introduced a technique for this called bootstrap aggregating or bagging [12].

The idea behind bagging is elegant in its simplicity: Construct each model with a different
subset of the data set. The input data is divided in an in-bag and out-out-bag set not unlike
the training and test set used in neural networks. This division of the data set is different for
each tree. The in-bag data is used to construct the tree, while the out-of-bag data is used
to generate variable importances and estimate the accuracy of a tree. Important to note is
that the in-bag data set is assumed to contain enough information to construct an adequate
model. The individual trees will then be of reasonable quality, and the decision variables are
not expected to be significantly different. The decision values in splits will be different though,
preventing the steps in the predicted response to align. In that way combining predictions of
multiple trees will create a smoother surface, as shown in Figure 3.1.

The algorithm for building a forest is summarized in Algorithm 3. The prediction of a
random forest is the average prediction of all its trees, also shown in Algorithm 4.

Algorithm 3 Constructing a Forest

forestEnsemble ← {}
while (|forestEnsemble| < # Trees) do

inBag, outOfBag ← Bag(X, Y)
singleTree ← ConstructTree(inBag)
singleTree → forestEnsemble

Algorithm 4 Prediction of a Forest

totalContribution ← 0
for all singleTree ∈ forestEnsemble do

Predict(singleTree, x) / |forestEnsemble| → totalContribution
return totalContribution

Chapter 3. Random Forests – Algorithm 22

3.2.3 Parameters

In this section the parameters of the RF method are presented. For a practical example where
the impact of several of these parameters is shown, we refer to Section 3.2.4.

3.2.3.1 Random Seed

Any algorithm with a random component should be checked for the sensitivity to the random
seed. In the RF algorithm there are multiple random factors, namely the division in in-bag and
out-of-bag sets and the selection of variable candidate sets. When the other parameters allow
the RF model to attain sufficient quality, the random seed does not influence the behavior of
the forest significantly. Although the individual trees will differ, this effect is compensated by
taking the average prediction of the ensemble.

3.2.3.2 Leaf Size

The leaf size will in essence determine the size of the steps in the predicted response of a tree.
When leafs contain more data points the prediction values will be an average over more data
points, decreasing the resolution of the predicted response. A larger forest will compensate for
this loss in resolution though, and a larger leaf size can improve prediction accuracy in case of
noisy data. The impact of this parameter will be shown on a practical example in Section
3.2.4.

Remark that a leaf size of one would cause a tree to overfit. In such a tree, every predicted
response is a response value from the training set, not an average of multiple training responses.
It is clear that a tree with leaf size one does not generalize well. A forest is in general robust
against overfitting because the prediction is the average response of multiple trees.

3.2.3.3 Number of Trees

In Section 3.2.1 it was demonstrated that a single tree was not sufficient to provide adequate
predictions. While more trees yield smoother results in general, it is of interest to know how
many trees should be combined. Recall that the diversity within the ensemble is important as
well for the predictive capabilities of the forest. This effect can be dramatic, such that better
predictions can be obtained using a smaller highly diverse ensemble [27]. The impact of this
parameter will be shown on a practical example in Section 3.2.4.

3.2.3.4 Candidate Subset Size

At every node in the tree the optimal candidate variable is selected for splitting. In order
to provide a decent model, splits should occur on an important variable, since testing the
data for an irrelevant attribute does not yield information. The information gain criterion will
ensure this selection if important variables are present in the candidate set. However, consider
the case when only a very small portion of the input variables are important. Then a small
candidate subset size K results in a low probability of selecting an important decision variable.
Yet the choice for K was also motivated by practical concerns since each candidate evaluation
will use computational resources. The impact of this parameter will be shown on a practical
example in Section 3.2.4.

Chapter 3. Random Forests – Algorithm 23

3.2.4 Examples

3.2.4.1 Finding an Optimal Split in a CART

This example shows how to find the best split according to the Gini criterion, given a data set
of input-response values. We use the following data set:

x1 x2 y

1 1 2
2 0 2
3 2 4
0 3 3
1 0 1

The first step in finding the best split is calculating the baseline, in other words the squared
sum of the response variable divided by the size of the partition. For this data set this results
in:

baseline =
(2 + 2 + 4 + 3 + 1)2

5
= 28.8

To determine the optimal split, we check the information gain of all variables, as defined in
Equation 3.2. We do this for all possible decision values, as defined by Equation 3.1. We start
by sorting variable x1, the resulting order is:

x1 0 1 1 2 3

y 3 2 1 2 4

Now we determine the information gain for all values splitting the partition for x1. We indicate
the partition boundary by a double line.

x1 0 1 1 2 3

y 3 2 1 2 4
gain = 32

1 + (2+1+2+4)2

4 − baseline = 0.45

Remark that it is impossible to split between two identical x1 values.

x1 0 1 1 2 3

y 3 2 1 2 4
gain = (3+2+1)2

3 + (2+4)2

2 − baseline = 1.2

x1 0 1 1 2 3

y 3 2 1 2 4
gain = (3+2+1+2)2

4 + (4)2

1 − baseline = 3.2

We conclude that the best split for variable x1 is between 2 and 3 since this results in the
most information gain.

Analogously, we will consider variable x2. We first sort the data set on x2, resulting in the
following order:

x2 0 0 1 2 3

y 2 1 2 4 3

Since a split can only occur between two different values, the first partitioning that we consider
is:

x2 0 0 1 2 3

y 2 1 2 4 3
gain = (2+1)2

2 + (2+4+3)2

3 − baseline = 2.7

Chapter 3. Random Forests – Algorithm 24

We continue checking the information gain for the other decision values:

x2 0 0 1 2 3

y 2 1 2 4 3
gain = (2+1+2)2

3 + (4+3)2

2 − baseline = 4.04

x2 0 0 1 2 3

y 2 1 2 4 3
gain = (2+1+2+4)2

4 + (3)2

1 − baseline = 0.45

We conclude that the best split for variable x2 is between 1 and 2.
The best split is determined by the variable with the highest information gain. Variable

x2 scores higher with a score of 4.05, compared to variable x1 with 3.2. This score for x2
was obtained by partitioning in between values 1 and 2. Consequently, the best split for this
example has x2 as the decision variable, and 1.5 as the decision value.

3.2.4.2 Tree Structure and Prediction

To start with a basic 2d example, consider the function:

y = f(x1, x2) = x2 sin(x1) (3.3)

Let us generate a data set by sampling this function in 100 points placed on an equidistant
grid, with ranges:

x1 = 0 :
π

5
: 2π, x2 = 1 : 0.4 : 5 (3.4)

The prediction of a forest of 20 trees is visualized in Figure 3.2. An explicit tree is shown in
Figure 3.3, where the response to input (5.5, 3.5) is predicted.

0
2

4
6

8

0

2

4

6
−5

0

5

0
2

4
6

8

0

2

4

6
−5

0

5

Figure 3.2: On the left the data as generated from Equation 3.3. To the right the prediction
of a forest of 20 trees. Remark that the prediction of the forest approximates the original data
but the response is less pronounced. This behavior is due to the averaging over input points
taking place in a leaf. As for the other parameters the leaf size is 5, the in-bag data is 2/3 of
the full data set sampled with replacement, the size of the candidate set was 1.

Chapter 3. Random Forests – Algorithm 25

x2<3 . 8 8 889

x1<3 . 1 4 159

yes

x 2<4 . 3 3 333

no

x2<2 . 1 1 111

yes

x 2<1 . 6 6 667

no

x2<1 . 2 2 222

yes

x 2<2 . 5 5 556

no

0 . 433013

yes

x 2<1 . 6 6 667

no

0 . 791864

yes

0 . 975967

no

2 . 15931

yes

x 1<0 . 3 4 9066

no

0

yes

x 1<2 . 4 4 346

no

2 . 41359

yes

1 . 02606

no

-0 .257115

yes

x 1<3 . 8 3 972

no

x 2 < 3

yes

x 2<2 . 1 1 111

no

-0 .798047

yes

-1 .2034

no

-1 .30866

yes

x 1<5 . 2 3 599

no

-2 .62559

yes

-2 .26166

no

x1<2 . 7 9 253

yes

x 2<4 . 7 7 778

no

x1<1 . 0 4 72

yes

-2 .02433

no

2 . 64257

yes

3 . 92657

no

0 . 203394

yes

-0 .167093

no

Figure 3.3: Predicting the response in a CART, part of the forest used in predicting the
response as shown in Figure 3.2. Here the prediction path is shown in green for input (5.5, 3.5).
The resulting prediction is −2.26166 while the true value as obtained from the generating
function given in Equation 3.3 is −2.47. While the error of a single tree can be rather large,
this will be less of a problem in the forest prediction.

3.2.4.3 Partitioning the Input Space

To illustrate how a tree divides the input space in neighborhoods corresponding to the points
in a leaf, we use the 2d-Salustowicz function as introduced in [94]:

f(x1, x2) =
(
e−x1x31 cos(x1) sin(x1)(cos(x1) sin2(x1)− 1)

)
(x2 − 5) (3.5)

The response of this function is also shown in Figure 3.4. This function is sampled on
equidistant grids where the ranges of the variables are:

0.05 ≤ x1 ≤ 10, 0.05 ≤ x2 ≤ 10.05 (3.6)

such that a coarse grid consists of 10 distinct levels in each variable, and a fine grid consists
of 100 levels. The division of the input space is shown on a colored height map of the
2d-Salustowicz function. The difference in prediction resulting from the resolution of the grid
can be observed in Figures 3.5 and 3.6. Remark that for many modeling problems it is not
optimal to sample on an equidistant grid, but we choose to do so in this example because the
spatial division is very regular. The effect of not sampling on a grid is shown in Figure 3.4.
The other parameters are fixed: a leaf size of 5, candidate set size of 2, no bagging (all data
in-bag).

Chapter 3. Random Forests – Algorithm 26

0 1 2 3 4 5 6 7 8 9 10

0

5

10

15

−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 3.4: The 2d-Salustowicz function as described by Equation 3.5.

 1 2 3 4 5 6 7 8 9 10

 2

 4

 6

 8

 10

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

Figure 3.5: Spatial division by a tree for the 2d-Salustowicz function. The tree uses the full
data set, two decision variable candidates per split, and the data is sampled on the fine input
grid. Remark that the division is strongly influenced by the rate of change of the response.

Chapter 3. Random Forests – Algorithm 27

 1 2 3 4 5 6 7 8 9 10

 2

 4

 6

 8

 10

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

Figure 3.6: Spatial division of a tree for the 2d-Salustowicz function sampled on the coarse
input grid. Remark that the prediction accuracy of the tree is significantly affected by the
sparsity of the training data. This is indicated by the larger size of the regions, since all point
in a region have the same predicted response.

 1 2 3 4 5 6 7 8 9 10

 2

 4

 6

 8

 10

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

Figure 3.7: Spatial division of a tree for the 2d-Salustowicz function, where the training points
are not on a grid but sampled randomly. Since splits do no longer ‘cleanly’ divide the input
space, this allows for much more diversity.

Chapter 3. Random Forests – Algorithm 28

3.2.4.4 Influence of the Random Forest Parameters

Visualizing the prediction is only possible in low dimensionality, so we opted to use an example
with two variables. We use the response obtained from interpreting the grayscale values of
the picture shown in Figure 3.8 as the response. We chose to use a picture because of the
very non-linear response, and additionally the prediction defects will stand out and are more
intuitive. The resolution of the picture was reduced to 150x150 pixels prior to modeling, to
accelerate the modeling process. A preliminary test based on 1000 trees, 2/3 in-bag data, leaf
size of 5, candidate set size of 1, as shown in Figure 3.8 indicates that RF is capable of dealing
with this kind of response surface.

(a) Original (b) Reduced (c) Predicted

Figure 3.8: Feasibility test to see if RF is capable of dealing with this kind of response surface.

Before exploring the influence of different parameters, let us take a closer look at the
response surface as shown in Figure 3.9. From both the height map and the contour plot it
is apparent that the response behaves wildly. This is intuitively due to edges in the image,
where the grayscale value changes dramatically fast in a direction, for example, the transition
from the black collar to the white wall.

In the next sections we will investigate the influence of several parameters of the random
forest algorithm. In each section one parameter will be varied while keeping the other
parameters fixed. When a parameter is not specified, we used the value given in Table 3.1.

Parameter Value

Number of trees 1000
In-Bag data 2/3
Leaf Size 5
Candidate set size 1

Table 3.1: The prediction examples from the next sections use these default parameter values.

Chapter 3. Random Forests – Algorithm 29

(a) Reduced - Height map (b) Reduced - Contour plot

(c) Predicted - Height map (d) Predicted - Contour plot

(e) Error - Height map (f) Error - Contour plot

Figure 3.9: Height maps and contour plots corresponding to the original data, its prediction
and error surface. Black corresponds to a value of one, while white is represented as zero. The
random forest parameters for generating Figure 3.9c and 3.9d are given in Table 3.1.

Chapter 3. Random Forests – Algorithm 30

3.2.4.4.1 Influence of the Forest Size

To see the impact on the prediction of a single tree and how a forest aggregates these predictions,
the forest size is varied and the results shown in Figure 3.10. We observe that while a single
tree does not provide a good prediction overall, the prediction is greatly improved by adding
more trees to the forest.

(a) # Trees = 1 (b) # Trees = 3 (c) # Trees = 5

(d) # Trees = 10 (e) # Trees = 20 (f) # Trees = 40

Figure 3.10: The influence of varying the forest size, with the other parameters fixed at the
values given in Table 3.1. Remark that for this example after 20 trees, adding more trees does
not improve the prediction much. In addition the increase in prediction accuracy from adding
another tree diminishes with the size of the forest. In higher dimensionality this property is of
particular interest.

Chapter 3. Random Forests – Algorithm 31

3.2.4.4.2 Influence of the Leaf Size

To see the impact on the prediction of a single tree, the leaf size is varied and the results
shown in Figure 3.11. By increasing the leaf size the prediction is smoothed out more, in other
words larger neighborhoods are assigned the same prediction value. How the forest aggregates
this predictions is shown in Figure 3.12.

(a) Leaf Size = 5 (b) Leaf Size = 10 (c) Leaf Size = 20

(d) Leaf Size = 30 (e) Leaf Size = 40 (f) Leaf Size = 50

Figure 3.11: Illustrating the influence of the leaf size on the prediction of a single tree, with
the other parameters fixed at the values given in Table 3.1. Remark that the size of rectangles
with the same value increases with the leaf size.

(a) Leaf Size = 1 (b) Leaf Size = 5

Figure 3.12: Prediction of a forest using the parameter values given in Table 3.1. Remark
that having one candidate is the same as choosing a random decision variable.

Chapter 3. Random Forests – Algorithm 32

3.2.4.4.3 Influence of Bagging

By bagging the inter-tree diversity is encouraged, since every tree is trained with only a subset
of the data. Training every tree with a smaller random subset from the data will amplify this
effect, as shown in Figure 3.13.

(a) In-bag = 5% (b) In-bag = 10% (c) In-bag = 20%

(d) In-bag = 66% (e) In-bag = 80% (f) In-bag = 100%

Figure 3.13: The prediction of a forest of 5 trees, with an increasing amount of in-bag data
sampled with replacement, the other parameters fixed at the values given in Table 3.1

(a) With replacement (b) Without replacement

Figure 3.14: For our example using the picture of a dog, sampling with or without replacement
does not change the outcome noticeably. This is largely due to the low dimensionality of the
problem, and small forest size. The amount of in-bag data is 100% in these two figures, other
parameters are the same as in Figure 3.13.

Chapter 3. Random Forests – Algorithm 33

3.2.4.4.4 Influence of the Candidate Subset Size

An important source of randomness in RF is the candidate subset size. This will prevent trees
from all choosing the same decision variable, thus preventing the steps in the response to align.
This impact is shown in Figure 3.15. Remark that having only one candidate is the same as
choosing a random decision variable. As expected the image where trees are more diverse is
more blurry, indicating a smoother approximation.

(a) # Candidates = 1 (b) # Candidates = 2

Figure 3.15: Prediction of a forest using 20 trees, the other parameter values are given in
Table 3.1. Since the dimensionality of this problem is only two, all trees used in the figure
on the right will always split optimal. Although the crispness of the image indicates that
the predicted response is not as smooth, due to the lack of diversity. This can also be an
indication that the model is overfitting the training data.

3.2.4.5 Interpolation Example

To show RF handling input values within the domain of the training data, we revisit the
problem of modeling an image as in Section 3.2.4.4. Here we scaled the image to 1500x1500
pixels by predicting the response on a finer grid in the input domain. As can be seen from
Figure 3.16, this interpolation is reasonable.

Figure 3.16: Interpolation using a forest constructed with the default parameter values given
in Table 3.1. No extra artifacts are introduced.

Chapter 3. Random Forests – Variable Importance 34

3.2.4.6 Extrapolation Example

To show RF handling input values outside the domain of the training data, we revisit the
problem of modeling an image as in Section 3.2.4.4. Here we generated a model and sampled
outside that range. The result is shown in Figure 3.17. This behavior was to be expected,
knowing the prediction mechanism of a tree. Predictions outside the training ranges are the
same as the prediction of the closest point within the training range.

Figure 3.17: Extrapolation from an random forest model constructed with the default parameter
values as given in Table 3.1. The predictions outside the training range are the same as the
prediction on the boundary of the training range.

3.3 Variable Importance

Several approaches to VI in RF exist. Accumulating the Gini index was proposed originally,
later complemented by a technique which we will call ‘Shuffle’. For a comprehensive comparison
of linear regression and RF with respect to VI we refer to [31].

Throughout this section we illustrate the different variable importance measures using an
example. Consider the data set given in Section 3.2.4.1. If we finish the tree construction,
using a leaf size of one, the resulting tree is as follows:

Chapter 3. Random Forests – Variable Importance 35

x 2<1 . 5

ga i n=4 . 034

x 2<0 . 5

ga i n=0 . 167

yes

x 1<1 . 5

ga in=0 .5

no

x 1<1 . 5

ga in=0 .5

ye s

2

no

1

yes

2

no

3

yes

4

no

Figure 3.18: The tree generated for the data set given in Section 3.2.4.1. For this example a
leaf size of one is used, so every response value is in a separate terminal node.

3.3.1 Accumulating the Gini Index

The method originally proposed was to use the value of the splitting criterion. Here the VI of
variable i is the sum of G over all splits where i is the decision variable. Formally let gjk,c be
the value of criterion G for split j with decision variable k and decision value c. Then define
the VI of variable i as follows:

Ii =
∑
j

gji,c (3.7)

We apply this importance measure on the tree given in Figure 3.18. Summing the
information gain of each variable results in the following importances:

Variable Gini Importance

x1 0.5 + 0.5 = 1
x2 4.034 + 0.167 = 4.2

In Section 5.2, we compare the accumulated Gini index to other VI measures in a series of
experiments.

3.3.2 Importance Estimation by Shuffling

An alternative method for determining VI in RF is by perturbing data records and determine
the change in prediction error. Each out-of-bag data point is evaluated using the value of that
variable from another out-of-bag point in the data set. The resulting point is also known as a
perturbed data point. More formally consider out-of-bag data perturbed in variable i:

X̃i = (x1, . . . , x̃i, . . . , xd) (3.8)

where x̃i is a random permutation of xi. The motivation for this perturbation is that important
variables are split more often, thus influencing the prediction path more than irrelevant variables.
In essence the contribution of a variable to the prediction path is estimated. Such that by
perturbing the data in an important variable, the perturbed points are more probable to end

Chapter 3. Random Forests – Variable Importance 36

up in a leaf ‘further away’ from their original leaf as the importance of the variable increases.
The importance of a variable can then be defined as the average change of the SSE per tree.
Or formally the variable importance of a tree t for variable i with out-of-bag set Ot:

Iti =
1

|Ot|
∑
j∈Ot

(f̂(x̃j)− yj)2 (3.9)

The VI as computed by a forest with a set T of trees can then be formulated as the average
over all trees:

Ii =
1

|T |
∑
t∈T

V Iti (3.10)

Remark that this definition is interpretable as defined in Chapter 2. Note that other yet
similar techniques are proposed as well [44]. In classification problems it has been shown that
the variable importance is biased towards variables with many categories [106], so caution
is advised when mixing categorical and continuous variables. In [28] different strategies are
proposed for selecting variables either for explanation or prediction, in addition they also
examine the influence of several parameters such as data dimensionality, number of data
points, size of K and the number of trees.

This shuffle technique is a random procedure, and it is suggested to compute the VI several
times using a different permutation of x̃i.

We apply this importance measure on the tree given in Figure 3.18. Let us estimate the
importance of variable x1 first. We shuffle all its values randomly and compute the square
error for predictions of the perturbed data points:

x1 x2 y

1 1 2
2 0 2
3 2 4
0 3 3
1 0 1

→

x1 x2 ŷ (ŷ − y)2

3 1 2 0
1 0 1 1
0 2 3 1
1 3 3 0
2 0 2 1

Summing the squared errors, we find that the importance score for x1 equals 3. We repeat
this procedure for variable x2, We randomly order its values:

x1 x2 y

1 1 2
2 0 2
3 2 4
0 3 3
1 0 1

→

x1 x2 ŷ (ŷ − y)2

1 0 1 1
2 3 4 4
3 0 2 4
0 2 3 0
1 1 2 1

Summing the squared errors, we find that the importance score for x2 equals 10. In this
example, variable x2 is considered most important.

3.3.3 Counting the Number of Splits

Since the splits are effectively determining the tree, we propose to count the number of splits
on a variable for a fast approximation of the VI. Since this information is available during

Chapter 3. Random Forests – Properties 37

model building, it would not incur any extra computation such as with the aforementioned
‘Shuffle’ technique. Formally:

Ii = |{gjk,c|k = i}| (3.11)

Remark that this counting technique is not usable if the candidate set size is one. Since all
variables have equal probability of being selected as candidate decision variable, all variables
would be assigned the same importance.

We apply this importance measure on the tree given in Figure 3.18. Both variables are
split twice, so they are considered equally important by this importance measure.

3.4 Properties

3.4.1 Adaptive Nearest Neighbors

As observed from the examples in Section 3.2.4, a tree prediction can be interpreted as a
local property in a neighborhood. The information gain criterion favors nodes with similar
values, so intuitively data points grouped in a leaf can be considered ‘close’ together. Remark
this intuitive notion holds because the decision boundaries divide the input space in convex
partitions. This behavior resembles a nearest neighbors prediction, a notion also discussed in
[8]. Although we will not explore this property further, this similarity with nearest neighbors
provides considerable insight into tree prediction. While we only mention this property
informally, we refer to the literature for a formal treatment [70].

3.4.2 Model Extrapolation

The prediction of a tree is the average of a combination of responses present in the data Y .
The prediction of a tree or forest will therefore never leave the observed response range. In
addition the prediction is based directly on the locality of the new input point x compared to
points in X. In case x is not in the domain of training points, the resulting prediction reflects
the prediction at the boundary of the input domain.

3.5 Applications

Random forests are capable of both classification and regression tasks, but are also routinely
used for variable screening. The field of bio-informatics extensively uses random forest for
analyzing micro-array data in screening studies [5, 23, 75, 15]. Another interesting application
of RF is the study on fault diagnosis [76, 17, 120]. Also for tasks closer related to pattern
recognition the RF technique is attractive. For instance RF is used for face detection and
recognition [7] and predicting the age of a person through face image analysis [80].

3.6 Summary

In this chapter we have shown how to build a classification and regression tree (CART) and
how they can be combined in a forest. We observed that the prediction of a single CART
is a multidimensional step function, and not a good approximator for smooth functions. A
random forest (RF) is able to approximate smooth functions by averaging the predictions of
several CARTs.

Chapter 3. Random Forests – Summary 38

The influence of different parameters of RF was shown using an example where the gray-
values of an image were approximated. We concluded that for this low dimensional problem
a low number of trees was sufficient for a good prediction. Using a larger leaf size yielded
smoother results, and this parameter is of interest for noisy problems. By increasing the
candidate set size we observed a lower prediction error, but stressed the need for diversity
in the population of trees. The diversity is also influenced by the bootstrap aggregation or
bagging, and good results were observed with the default 2/3 in-bag data. In addition we have
shown that RF interpolates well for our test problem, while extrapolation is not meaningful
by the definition of the tree construction.

We have shown two variable importance measures for RF. A shuffle method based on
evaluating out-of-bag points with perturbed values, and the accumulation of the splitting
criterion for a variable called Gini index. The behavior of these measures will be investigated
in Chapter 5.

Chapter 4

Symbolic Regression

4.1 Motivation

Symbolic regression (SR) differs from traditional regression since it does not rely on a specific
a priori determined model structure. The only assumption made in SR is that the response
surface can be described by an algebraic expression. Instead of the traditional approach where
the model structure is fixed and the remaining free parameters are optimized, SR reformulates
the regression problem as a search problem for the optimal model structure. Once a model
structure of sufficient quality is found, traditional techniques can be used to find the optimal
coefficients.

The goal of finding a global model described by an algebraic expression certainly is
ambitious. Since the number of possible expressions is infinite, it is apparent that a powerful
search technique will be required. This ability to efficiently find solutions in a vast search
space is provided by genetic programming.

This approach to regression has been shown to perform well for several industrial data
sets [102, 50, 6], where the data is typically noisy, of high dimensionality and exhibit strong
non-linear behavior. A discussion on the advantages of evolutionary computation in industrial
applications is found in [58]. This shows beyond doubt that this technique holds promise, and
motivated us to provide an in-depth treatment.

4.2 Algorithm

The algorithm used for SR is best explained in a structured fashion, so all concepts are
introduced in their proper context. To this end we explore genetic algorithms first, of which
genetic programming (GP) is a specialization. Then GP is augmented to Pareto GP, by
incorporating the concept of Pareto optimality. The theory of ordinal optimization is a valuable
addition and results in Ordinal Pareto GP. We briefly mention an advanced technique called
ESSENCE. We conclude this section with examples.

4.2.1 Genetic Algorithm

A genetic algorithm (GA) belongs to the larger class of evolutionary algorithms (EA). The
goal of a GA is to solve an optimization problem, by evolving towards a solution, not unlike
iterative refinement methods. Where this method differs is that the evolutionary process is

39

Chapter 4. Symbolic Regression – Algorithm 40

inspired by nature, in particular mechanisms of information propagation through reproduction
and survival. An evolutionary process is not an endeavor undertaken alone, requiring any
GA to maintain multiple intermediate solutions. We adopt the terminology used in the GA
literature, reflecting the biological inspiration of the technique. The collection of intermediate
solutions is referred to as the population, where an individual is a single intermediate solution.

Every individual is encoded by a chromosome, traditionally represented by a string of
consecutive zero or one values. This could used for denoting presence or absence, for example
in context of a FS technique. This encoding is not always practical, and in general the choice
of encoding is problem dependent. For example GAs are also used to solve permutation
problems, where an optimal order of a fixed set of values must be found [72].

A fitness function will determine the quality of an individual, and is a guiding force
throughout the evolution. In other words the fitness function will reward and encourage
successful individuals while penalizing unfit individuals.

The evolution to a solution takes the form of an iterative stochastic search, where each
iteration is referred to as generation. Typically an initial population is composed of randomized
individuals. Their fitness is evaluated at every generation, and a new population is composed by
stochastically selecting individuals (also based on fitness) and recombining them in a meaningful
way. This recombination is referred to as reproduction, where the original individuals or
parents create a new population of children. To this end mutation and crossover operators are
used. Similar genetic operators are also found in nature.

A mutation is an operation partially changing the chromosome of a single individual.
Traditional crossover will combine the chromosomes of two parents, although multi-parent
operators are also a valid option. Simple examples are shown in Figure 4.1 and 4.2, but many
variants of these operators exist. When domain knowledge is available and the encoding allows
it, special purpose operators can be defined to accelerate the evolution. The convergence to
an optimal solution depends on the applicability of the reproduction operators to the problem.
A general requirement for crossover operators is that there is a reasonable probability that the
offspring is of higher fitness than the parents.

0 1 1 0 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1

Figure 4.1: Example of a simple two-point mutation operator in GA.

In any search problem there is always a trade-off between exploring new areas and exploiting
known areas. In the evolutionary search performed in GA this is no different. On the one
hand it is desirable to converge if good solutions are found, but on the other hand sufficient
exploration must be guaranteed in order to safeguard against convergence to local optima. In
other words the population diversity must be preserved. Some reproduction operators might
be specifically designed to create diversity, even if this means degrading the quality some
individuals for this purpose. In addition the rates of mutation and crossover will influence
this as well. Intuitively a mutation can bee seen a random jump made by an individual while
offspring from crossover is expected to be a step in a reasonable direction. This implies that
more mutations will slow down convergence, but there is more exploration.

There is no way to predict the result of an evolution except by observing it. This
reformulates the original modeling problem from a search problem to a dynamic system
problem. Thus it becomes a priority to gain insight in how this complex process is influenced

Chapter 4. Symbolic Regression – Algorithm 41

0 1 1 0 1 0 0 1 0 1 1 0 0 0 1 0 0 1 0 1

1 0 0 1 1 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0

(a) One point

0 1 1 0 1 0 0 1 0 1

1 0 0 0 1 0 1 1 0 0

0 1 1 1 1 0 0 0 0 1

1 0 0 1 1 0 1 0 0 0

(b) Two Point

Figure 4.2: Examples of simple crossover operators in GA.

by the set of rules that define the evolution. Again the problem is largely a matter of
representation. In other words the encoding of the chromosome and the operations performed
on them should make sense. This is one of the reasons why a GA can be very efficient.
Consider some of the traditional crossover schemes as shown in Figure 4.2. Intuitively they
extract some building blocks from the parents and recombine them to produce the offspring.
With a good encoding, the building blocks selected by this operators would represent logical
entities such their combination is meaningful.

4.2.2 Genetic Programming

Genetic programming (GP) is a specialized form of GA, in the sense that an individual is
explicitly assumed to be a parse tree instead of a string of values and therefore has a variable
length.

These parse trees often correspond to algebraic expressions, and GP is primarily used for
finding functional descriptions of input-output data, i.e. modeling. We refer to the literature
for details [60, 61, 62, 63].

While it is more common to evolve expressions or formulae, computer programs can
be evolved as well. As correctly observed in [2] : “To be evolutionarily effective, a fitness
function that measures the functionality of a result must correlated positively with a similarity
measure comparing the generated form with a fully effective form.” Which is problematic
when generating source code from scratch, since the optimal fitness function would already
know the answer. For example in [53, 54] a sorting algorithm is evolved, where the fitness
function is defined as how many swaps are needed to correctly sort the output generated by
an evolved program. This fitness function expresses ‘distance to a good solution’ but requires
understanding the problem, namely that a swap would be a logical measure for performance.
In this thesis we will not explore the automatic program generation further, but will limit
ourselves to expression trees representing an algebraic function.

When the fitness function in GP, constrained to algebraic expressions, is defined as a

Chapter 4. Symbolic Regression – Algorithm 42

regression error function, the resulting technique is known as symbolic regression (SR). In other
words GP is the evolutionary framework, while SR imposes a fitness function so individuals will
approximate the relationship in the data set. In [52] it is shown that the fitness function 1−R2

where R2 is the square of the scaled correlation between prediction and response, produces
better results than the MSE. In essence this will measure the fitness of the model should it be
optimally scaled. This allows for faster identification of interesting model structures compared
to the MSE.

In expression trees we distinguish between operators and terminals. Operators are functions
taking terminals as argument, for example plus or minus. Terminals are values or variables
the operators can process, such as a constant 2 or variable x1. Throughout the evolution care
must be taken to always generate valid expressions.

Remark that in order to find good expressions modeling a data set, the relation must be
captured by the functions available to the GP algorithm. For example data generated from an
exponential function can not be found starting when using only the operators {+,−, ∗, /}. In
other words an exact solution can only be found if the set of primitive functions is sufficient
to express the underlying relationship.

A good strategy to select individuals to create offspring is a tournament selection. A
tournament is organized for each participant in the reproduction, each tournament having a
random subset of individuals as competitors. The winner is then chosen to be the individual
with highest fitness. Remark how this method can be considered fair, since individuals with
average fitness still have the chance to reproduce. If this behavior would be discouraged, the
individuals with highest fitness would always produce the most offspring, leading to stagnation
of the population. In other words, performing selection by holding tournaments does not
jeopardize the diversity of the population.

In the simple crossover technique shown in the previous section, parents swapped a part of
their chromosome. In GP this corresponds to swapping subtrees as shown in Figure 4.4. A
one point mutation in GP corresponds to changing a single node in the parse tree as shown in
Figure 4.3. Remark that in order to create acceptable offspring with mutation, an operator
must be replaced with an operator of the same arity.

-

x2 √

x3

+

x2 √

x3

Figure 4.3: One point mutation example in GP. The operator minus is replaced by another
operator of the same arity.

4.2.3 Pareto GP

In GP we already represented an individual as a parse tree, but skipped over some important
issues. For example, the depth and complexity of individual trees. Consider what happens

Chapter 4. Symbolic Regression – Algorithm 43

x

+ -

x1 5 x2 √

x3

+

x

x
x3 9

x2

√

x1

+

x

x2

√

x1

x

+ -

x1 5 x2 √

x3

x

x2

√

x1

Figure 4.4: One point crossover example in GP. Two individuals effectively swap subtrees,
resulting in two new expressions.

when using the simple crossover operators as shown in Figure 4.4. Since the mutation points
are chosen randomly the newly generated expressions could very well be larger than the parent,
and have a deeper tree. While this behavior could be explicitly controlled by correcting the
situation as it occurs, it would be desirable to have a generic concept within the rules of the
evolution to diminish the impact of a possibly unlimited increase in expression complexity.

In addition we must recognize that most of real-world optimization problems do not have
a single objective function, and optimal decisions involve competing trade-offs. An example
is price versus quality. While everyone would like to have high quality products, another
objective is not to spend more resources than necessary. The solution results in finding an
acceptable balance in quality-price. This principle is also applicable in GP, and proves to be
very useful.

In GP the goal is to find high quality models, which should be as simple as possible but not
simpler. In other words when given the choice between two models having the same predictive
properties, the simpler is preferred. This is formalized using the notion of Pareto optimality.
In the context of conflicting objectives, a solution is Pareto optimal if it is not dominated by
another solution. A solution is known to be dominating another solution if it performs better
on at least one objective while not scoring less in any other objective. This is also shown in
Figure 4.5.

Chapter 4. Symbolic Regression – Algorithm 44

O
b

je
c

ti
v

e
 A

Objective B

Figure 4.5: Example of a Pareto optimality when minimizing two objectives. The slightly
larger red dots are part of the so-called Pareto front and indicate Pareto optimal solutions.
They are optimal since they are not dominated by any other solution. For example, the shaded
area indicates the space dominated by the point in its upper right corner. For several other
solutions the dominated space is indicated using dotted lines.

By introducing the concept of Pareto optimality, the search problem for good solutions is
augmented with a powerful tool to handle multiple objectives. Remark that while we only
mention complexity as an additional objective, Pareto optimality is also applicable in case
more than two objectives are involved.

A problem previously left untouched lies in the creation of the new generation. Consider
what would happen to an individual scoring very good on the fitness criteria. If the new
generation consists entirely out of offspring created by mutating and recombining existing
individuals, such good performing solutions might be lost. This is undesirable, and to
avoid this loss of knowledge an elitist strategy is applied. An archive of the set of current
optimal individuals is maintained. Remark that optimal refers to the Pareto optimality, or
an alternative niching strategy in a space of selected objectives. This quality preservation
strategy (elitism) is instrumental in the parent selection since it can be expected that the
probability to create offspring with good fitness will be higher if one of the parents was an
elite solution. Niching is instrumental to preserve the diversity of population.

Another issue previously left untouched is the stagnation of the population. When the
population converge to a solution, all members of the population will become similar. In
fact all individuals can be exactly the same in an extreme case. The population might be
converging to a local optima, and after diversity is lost there would be no way to escape
this local optima. To this end the population is reinitialized periodically while retaining the
archive, where the lifetime of a population is known as a cascade.

Pareto GP with a suitable fitness function is known as Pareto-aware Symbolic Regression,
or SR via Pareto GP [116, 101] and is implemented in [24].

4.2.4 Soft Ordinal Pareto GP

In traditional GP systems, the fitness of individuals is determined at every iteration using
the full data set. In practice SR would use all input data for predicting the performance of
all current models, determine the approximation error. In general the most computationally

Chapter 4. Symbolic Regression – Algorithm 45

intensive part of any GP is this fitness evaluation. A fast approximation of the fitness is of
interest, as this has a significant impact on the performance.

We will only briefly mention the concepts of ordinal optimization (OO). We refer the
interested reader to the paper introducing OO [38], and to [39] for a recent work which
theoretically validates the intuitive assumptions of OO.

The two fundamental ideas in OO:

• ‘Order’ is easier to determine and much more robust against noise than ‘Value’.

• Insisting on getting the ‘Best’ is too expensive, be willing to settle for the ‘Good Enough’.

In other words the two ideas of OO are to focus on fitness ranking in combination with
softening the goal. An example from [39] explains the difference between an ordinal and
cardinal approach elegantly:

Imagine you hold two identically looking boxes with unknown content in your
two hands. You are asked to judge which one is heavier than the other – and
‘ordinal’ question. Almost all of us can correctly tell the answer, even if there is
only a very slight difference between the weights of the two boxes. But if we are
asked to estimate the difference in weight between the two boxes – a ‘cardinal’
question, we will have a hard time.

In context of SR this would translate to model evaluation using only a subset of the full
input data. Details are given in [110], and we refer to [100] for an application of this approach
to Pareto aware SR.

This happens to be not only more efficient in terms of time spent on evaluation, but also
guarantees more diversity in the population. With this approach even average individuals can
rank higher on some subset evaluation, increasing its chance to create offspring. By using a
different subset at each generation the quality of the population will be preserved, while at
the same time encouraging more exploration.

By the end of the evolution the individuals should model the entire data set. This is
achieved by linearly increasing the subset size during the evolution. In effect the initial
populations will only have very limited partial representation of the data set, which allows
more exploration. By increasing the subset size the focus is gradually shifted from exploration
to exploitation in later generations.

This strategy opens an interesting question with respect to updating the archive. To be
fully consistent the archive should be re-evaluated on the data subset in use by the current
generation, so individuals between population and archive are comparable. As shown in [116,
Ch. 6] it turns out re-evaluating the archive at each generation is not strictly necessary to
provide good results. Re-evaluating the archive at every cascade will make sure that lower
quality individuals will be removed, although they can survive within a cascade. This allows
for more diversity and exploration during a cascade, while only the truly good individuals will
survive multiple cascades. This approach is called Soft Ordinal Pareto GP.

4.2.5 ESSENCE algorithm

In Soft Ordinal Pareto GP, the idea was introduced of evaluating individuals on only a subset
of the data. This strategy is further enhanced using the ESSENCE algorithm expected to
perform Effective Search Space Exploration via Nested Content-based Evolutions [116, Ch.

Chapter 4. Symbolic Regression – Algorithm 46

7]. Here the data subsets are nested, meaning that subsets used later in the evolution also
contain all points used previously. By using nested data subsets the periodic re-evaluation of
the archive will require less computational resources since only the newly added points since
the last evaluation need to be computed.

In addition the subsets are chosen to be maximally informative, such that good global
models could also be found from a small subset. Instead of increasing the subset size linearly,
the information in the subset is increased linearly. Remark that this may result in a non-linear
increase in subset size.

To elaborate on how the subsets are constructed would involve treating the issue of data
balancing briefly mentioned in Section 1.2.12.5. This is not within the scope of this thesis,
and for more information on the ESSENCE algorithm and empirical results we refer to [116,
Ch. 7]. We summarize that the ESSENCE algorithm is able to consistently achieve higher
quality solutions in comparison with Soft Ordinal Pareto GP, given that the data set does not
contain too many outliers and noise.

4.2.6 Examples

To show the capabilities of SR in practice we show two toy problems of limited dimensionality.
Experiments in Chapter 5 will use real life data sets of much higher dimensionality, but for
now we prefer low dimensional problems which are more intuitive.

4.2.6.1 Newton’s Universal Gravitation Law

As an example of the capabilities of SR, we generate a 3 dimensional data set of 50 points
following the universal gravitation law:

F = G
m1m2

r2
(4.1)

Where F is the force attracting two masses m1 and m2 over a distance r. The constant G is
the gravitational constant:

G = 6.67428× 10−11, with unit N(m/kg)2 (4.2)

The data was generated uniformly in ranges:

0 ≤ m1 ≤ 1, 0 ≤ m2 ≤ 1, 1 ≤ r ≤ 2 (4.3)

The univariate plot of all inputs and response is shown in Figure 4.6. The data set was
modeled using three independent runs of 150 seconds, and the resulting models are shown in
Figure 4.7.

Table 4.1 shows optimal solutions as found by SR, confirming that algebraic expressions
modeling the data set can be found. Remark that these models differ in their approximation
of the constant G. The model with best prediction error found the correct value for the
gravitational constant, such that the leading constant term is negligible.

Chapter 4. Symbolic Regression – Algorithm 47

Expression 1−R2 Complexity

3.656× 10−27 +
m1m2(6.674× 10−11)

r2
0.000 26

1.067× 10−12 +
m1m2(7.830× 10−11)

r3
0.043 25

−4.843× 10−13 +
m1m2(5.041× 10−11)

r
0.064 23

Table 4.1: A selection of Pareto optimal, nearly exact solutions as found by SR in three
independent runs of 150 seconds.

0.2

0.4

0.6

0.8

m1

0.2

0.4

0.6

0.8

1.0

m2

0.5

1.0

1.5

2.0

r

5. ´ 10
- 12

1. ´ 10
- 11

1.5 ´ 10
- 11

2. ´ 10
- 11

2.5 ´ 10
- 11

F

Figure 4.6: Univariate plot of all variables in the data set.

(a) (b)

20 40 60 80 100 120
10- 9

10- 7

10- 5

0.001

0.1

Complexity

1
-
R
²

Newton - 3 x150 seconds

Figure 4.7: Pareto front of models obtained in three independent runs of 150 seconds. The
Pareto optimal solutions with respect to prediction accuracy and model complexity are
indicated by slightly larger dots. Remark that (a) indicates the optimal solution as shown in
Table 4.1, such that 1−R2 = 0, with complexity 26. This will dominate the model indicated
by (b).

Chapter 4. Symbolic Regression – Algorithm 48

4.2.6.2 Defining Color Schemes

In later experiments we present results using bar charts. We wanted to use a visually pleasing
color scheme such as the ‘DarkRainbow’ scheme in Mathematica, yet we generated many plots
using Gnuplot [1]. The Gnuplot program is flexible enough to specify the colors of the bars
independently, but does not have a default color scheme similar to the ‘DarkRainbow’ style.

To achieve consistency in the color scheme we proceed to model the color output in function
of the bar index. We create the initial data set by sampling selected colors of a barplot in
Mathematica using RGB values, as shown in Figure 4.8. The goal is finding a good model for
each RGB component based on the index of a bar, where each RGB component is modeled
independently.

(a) Original Samples

(b) Predicted Gradient

Figure 4.8: The color spectrum was sampled at the 20 discrete points shown in Figure 4.8a.
Using those data points we modeled the RGB components using SR. The final model can be
sampled over the full spectrum, resulting in the smooth gradient shown in Figure 4.8b

The relation of each component with respect to the index is shown in Figure 4.9. As can
be observed there is not enough information to determine the exact model structure a priori.

50

100

150

200

Red

50

100

150

Green

20

40

60

80

100

120

140

Blue

(a) Original Samples

50

100

150

200

Red

50

100

150

Green

20

40

60

80

100

120

140

Blue

(b) Predicted Gradient

Figure 4.9: The RGB components plotted versus the bar index. Observe that models created
by SR result in smooth functions.

Chapter 4. Symbolic Regression – Algorithm 49

0 100 200 300 400 500

0.005

0.010

0.050

0.100

0.500

1.000

Complexity

1
-
R

2

Red3x80

0 100 200 300 400 500 600

0.01

0.02

0.05

0.10

0.20

0.50

1.00

Complexity

1
-
R

2

Green3x80

0 50 100 150 200 250 300 350

0.01

0.02

0.05

0.10

0.20

0.50

Complexity

1
-
R

2

Blue3x80

Figure 4.10: Pareto front of models obtained in three independent runs of 80 seconds. The
Pareto optimal solutions with respect to prediction accuracy and model complexity are
indicated by slightly larger dots.

Chapter 4. Symbolic Regression – Variable Importance 50

All models produced in three independent runs of 80 seconds are shown in Figure 4.10.
Since the Pareto front indicates optimal trade-offs, we select one model from the Pareto
front for each component as the final solution, shown in Table 4.2. We find these models
have a simple structure while still achieving very good prediction accuracy. The difference
between the original color scheme and the solutions shown in Table 4.2 is on average two color
values. This error is hardly noticeable by the human eye. While there are models with a
higher accuracy, their model complexity is significantly higher. Remark that longer runs might
provide even more accurate models with lower complexity, but this solution was sufficient for
the purpose of providing a color scheme.

As Figures 4.8 and 4.9 confirm, colors based on these formulas not only match the original
data points, but also allows for smooth interpolation.

Color Expression 1−R2 Complexity

R = 57.291 +
181.657

−i+ 1.396 + i662.633
0.004 50

G = 49.667 +
i220669.400

540i4 + 9.536
0.009 54

B = 55.856 + 10.002
(
i+ 63.125i2(2i− 1.202)2

(
−i2 + 1.202

))
0.006 100

Table 4.2: The approximation for the red-green-blue component in function of the bar index i.
We selected these models as solution based on a three independent runs of 80 seconds each.

4.3 Variable Importance

4.3.1 Population Based VI

Since SR uses a population of models a sensible approach is to examine the presence of a
variable in the population. Models incorporating variables that are irrelevant to the problem
will introduce extra complexity without achieving a better prediction error. Due to the Pareto
optimality such individuals will have less chance to create offspring, which is an effective
strategy to avoid irrelevant variables. Therefore, the presence of a variable in a sufficiently
evolved population will provide an indication on whether that variable is relevant for describing
the response. Remark that this is an interpretable measure as defined in Section 2.1.

We present presence-weighted and fitness-weighted VI as defined in [117]. Let us first
define a function indicating whether a variable xi is present in model Mj :

δ(xi,Mj) =

{
1 if xi ⊂Mj

0 if xi 6⊂Mj
(4.4)

4.3.1.1 Presence-Weighted VI

The presence-weighted VI for any variable xi with i ∈ {1, . . . , d} in a set of models M =
{M1, . . . ,Ms} is computed as the fraction of models containing xi. Such definition provides

Chapter 4. Symbolic Regression – Variable Importance 51

a robust estimation of relevance if the models in set M are of high quality and sufficiently
diverse, i.e. obtained using several independent runs.

I(PW)
i (M) =

s∑
j=1

δ(xi,Mj)

m
, (4.5)

4.3.1.2 Fitness-Weighted VI

The fitness-weighted VI eliminates the need for high quality in M (but does not eliminate
the need for diversity) by weighting the presence indicator with the fitness of each model. It
also takes into account the complexity of the model, by dividing the fitness equally over all
variables present in a model:

I(FW)
i (M) =

s∑
j=1

fitness(Mj)∑d
i=1 δ(xi,Mj)

δ(xi,Mj) (4.6)

Remark that in the extreme case of a population of perfect models, the fitness-weighted
VI is equivalent with the presence-weighted variable importance. For the remainder of the
thesis we will use the normalized fitness-weighted VI as defined by:

I(NFW)
i (M) =

I(FW)
i (M)∑d

i=1 I
(FW)
i (M)

∗ 100% (4.7)

4.3.2 Individual Based VI

Previously we described techniques to determine VI given a population of sufficient quality.
However, we are also interested in measures to compute VI given a single model. To this end
we explore several options, some only applicable to algebraic expressions such as provided in
SR.

4.3.2.1 Derivation of the Expression

In our first discussion about importance in Chapter 2, we noted that importance is a local
property. Furthermore in any point of the input domain the local importance of any variable
would be the partial derivative over that variable. If we are given a model consisting of a
differentiable function, we recall Equation 2.2:

Ii(y, xk) =

n∑
k=1

∂f̂

∂xi
(xk) (4.8)

In Section 5.3 we will examine the behavior of this measure in several experiments.

4.3.2.2 Substitution by the Mean

It could be that a variable in the model actually assumes the role of a constant, thus never
changing value. Then judging the importance using presence or absence as indicator would be
flawed. The prediction error will change, but models of the same accuracy could also be build
without this constant disguised as a variable. Replacing this variable by its mean would give
an impression of the approximation error should this variable be removed from the model. In
Section 5.3 we will examine the behavior of this measure in several experiments.

Chapter 4. Symbolic Regression – Properties 52

4.3.2.3 Variable Elimination

We defined importance as the change resulting from the presence or absence of a variable.
A literal approach is to eliminate the variable from the expression. Let us introduce an
elimination operator Q(x, expr) which eliminates variable x from expression expr and yields a
new expression.

In order to eliminate a variable we remove that variable and operators involving that
variable. Consider addition and multiplication:

Q(a, a+ b) = b, Q(a, a ∗ b) = b (4.9)

Remark that eliminating variables this way is curious, since variable ‘a’ is actually replaced by
a value depending on the operator involved. In case of operator plus or minus, elimination as
defined here is equivalent with replacing by zero. While in case of multiplication of division,
the variable is replaced by one.

For unary operators such as sine and cosine, the operator is also eliminated such that:

Q(a, sin(a) + b) = b (4.10)

Now consider a more difficult case of exponentials:

Q(a, ab + c) = c, Q(b, ab + c) = a+ c (4.11)

This choice is not obvious, since eliminating variable ‘a’ would remove variable ‘b’ from that
subexpression as well. This illustrates that an elimination technique is rather crude. In Section
5.3 we will examine the behavior of this measure in several experiments.

4.3.2.4 Importance Estimation by Shuffling

It is also of interest to examine the primary VI technique used by RF, described at length in
Section 3.3.2, when applied to expressions. In Section 5.3 we will examine the behavior of this
measure in several experiments.

4.4 Properties

4.4.1 Model Structure

A key strong point of SR is that is does not make assumptions about the model structure,
instead only the set of primitive functions must be specified. An optimal model will then be
searched for, in the space of all possible models using these primitive functions. However,
choosing an ill-fitted set of primitive functions will have consequences. On the one hand, when
choosing the set of primitive functions too small, the problem can not be solved exactly and
one can only hope that an approximation can be provided. On the other hand, if the set of
primitive functions is too large, the search space is increased unnecessary.

4.4.2 Stopping Criteria for the Evolution

Since the SR algorithm is a stochastic process, it is not clear when the evolution should be
stopped. The model building process is ideally a continuous evolution, and while convergence

Chapter 4. Symbolic Regression – Properties 53

is assumed, there is little information available about the speed of convergence or the proximity
to a acceptable solutions.

A pragmatic approach is allocating a certain computational budget to SR, in terms of
function evaluations or time in seconds. In practice models are accepted as final solution if
their performance is good, and SR can not find better solutions in runs that are ‘long enough’.
For this reason it remains important to look for robust algorithmic configurations that ensure
the discovery of models of sufficient pre-defined quality.

4.4.3 Prediction Confidence

The final solution produced by SR is no single model, but rather a population of models. If all
these models are of sufficient quality, their disagreement can be used as confidence intervals
for predictions. This idea is illustrated in Figure 4.11

x

y

Models Developed in 1s

Figure 4.11: Response curves of models found by SR fitting the two points. The model
disagreement can be used a measure for confidence.

4.4.4 Robust Model Building

As we will see in the later experiments, SR proves to be capable of handling irrelevant variables.
In addition correlated variables and data imbalance are less of a problem compared with other
techniques we studied. This does not imply that SR is insensitive to these problems, the model
building is greatly facilitated if variables are not correlated and the data is balanced. However,
we empirically observed that the performance of SR remains acceptable even in presence of all
the aforementioned issues.

4.4.5 Computational Intensity

The reformulation of the regression problem to a search problem with infinite search space is
not always favorable. When the regression problem can be solved using traditional modeling
methods, these techniques are typically faster than SR. However, when traditional techniques
prove insufficient, the heuristic exploration of an infinite search space is more attractive than
giving up on solving the problem.

Chapter 4. Symbolic Regression – Applications 54

4.4.6 Model Interpretability

Although the convergence SR to a global optimal solution can be slow, approximate model
structures as used in intermediate generations already provide insight into the problem. For
example if preliminary runs indicate that the model structure is probably linear, traditional
regression techniques might be used to solve the problem efficiently.

In addition all created models are an explicit algebraic expression and are readily inter-
pretable. This full insight into the model is invaluable for domain experts. For example the
domain expert might recognize a part of a known physical law, and the model can be easily
adapted to incorporate this knowledge. This contrasts with models produced by RF or NN.

4.5 Applications

Symbolic regression is applied in sensory science, for modeling panel data. This is data
obtained through experiments where a panel of subjects assigns a liking score to a sensory
observation. When considering sensory information for taste it is of great interest to find
optimal recipes and identify ingredients that drive liking. For background on why mustard
comes in many varieties and ketchup does not we refer to [30]. Interpreting sensory panel
data poses a challenge since flavors interacts non-linearly and the data is typically sparse. In
addition panel members will have personal preferences, thus reacting differently to the same
flavor. Segmenting the panel members according to personal preferences can be of commercial
interest as well, since deciding how many different versions of a product to bring to the market
will typically be founded on a sensory study to determine the potential interest. A study on
such data set provided by Givaudan Flavors Corporation is presented in [117].

Developing soft sensors is a key application in an industrial setting. A soft sensor is a
model to predict or infer the outcome of a process, implying that models need to be adaptive
to changes in the process. The prediction of such models is for example used to control the
process they describe, and optimize the process parameters in real-time. In [59] ensembles of
SR predictors are successfully applied to the biomass estimation for the growth phase in a
batch fermentation process.

Interval arithmetic [51] and affine arithmetic [91] can be used to analyze the output ranges
of generated models during evolution. This allows for undesirable models to be rejected
without doing the costly fitness evaluation. For instance models containing asymptotes can be
detected this way. It is shown that applying such static analysis significantly improves the
generalization performance of SR, while reducing over-fitting.

The prospects of auto-constructive evolution is discussed in [105], where operators for
aspects such as reproduction are themselves encoded in the individuals. This will in effect
co-evolve the problem solver as well as the solution. The results are preliminary, but it is
speculated that auto-constructive evolution will extend the problem-solving power of GP.

4.6 Summary

This chapter situates symbolic regression (SR) in the context of evolutionary computation.
While a genetic algorithm (GA) searches for solutions to an optimization problem, genetic
programming (GP) searches for optimal parse trees describing functional input-output rela-
tionships. Pareto GP is a generalization of GP, where the fitness of an individual is determined

Chapter 4. Symbolic Regression – Summary 55

by the optimality of multiple objectives. Soft Ordinal Pareto GP applies goal softening by
evaluating individuals on a subset of the data set, allowing more exploration and diversity. The
ESSENCE algorithm also uses this approach, and increases success by strategically choosing
the subsets and their size.

In Pareto-aware SR only parse trees of algebraic expressions are considered, and their
quality is judged by their prediction error on a data set. A second objective is the minimization
of the expression complexity, such that parsimonious models are preferred over complex models.
This encourages SR to find models that are as simple as possible but not simpler. Examples
illustrate the effectiveness of SR, rediscovering Newton’s law of universal gravitation and
deriving a smooth color gradient from a limited number of samples.

This chapter also discusses several variable importance measures for SR, either population-
or individual-based. The behavior of these measures is investigated in Chapter 5.

Chapter 5

Experiments

It is of interest to study the techniques presented in the previous chapters in practice. This
chapter provides selected results on experiments designed to increase understanding of the
properties of each VI technique and their relation with the model structure.

First, the RF and SR methods are compared, followed by additional tests with alternative
VI measures as introduced in Section 3.3 and 4.3.2. The same data set is used for both
algorithms, and variables are uniformly sampled between zero and one unless stated otherwise.

All RF runs use the implementation detailed in Chapter 7, and we verified the results
with available implementations. In all RF runs, a forest of 1000 trees was built, considering
candidate subsets of the default |d|/3 size to determine the best split. The in-bag data was 2/3
of the data, sampled without replacement. The shuffle method was used to compute VI, with
5 random permutations for each of the 20 independent runs. The mean normalized variable
importances are plotted in bar charts, using the 25-50-75 percentile points as confidence
interval.

All SR runs use the DataModeler package [4] in Mathematica. In all SR runs, the fitness
function for prediction accuracy was defined as 1−R2 where R2 is the square of the scaled
correlation between prediction and response. The sum of subtree sizes in an expression was
used as complexity measure. Model age was used as the secondary complexity measure.
Variable importance is computed over several independent runs. The mean normalized variable
importances are plotted in bar charts, using the 25-50-75 percentile points as confidence
interval.

Recall the desirable VI properties from Section 2.1. We will use these properties when
discussing experimental results.

• Interpretability–Obtained importances should reflect the importances of the true
input variables, without transformation.

• Strictness–Only variables relevant to describing the response should be allocated
importances, so spurious variables should not appear important.

• Conservativeness–At intermediate stages of importance analysis all potentially inter-
esting variables should receive importance.

• Reproducibility–A result can only be considered correct if it is reproducible.

• Universality–It is desirable for importances to be mutually comparable, and in addition
to be problem independent.

56

Chapter 5. Experiments – Comparative Study 57

5.1 Comparative Study

In this section we empirically compare RF and SR with respect to VI on diverse problems.
For RF the Shuffling method is used as it is the most commonly used VI technique for RF, see
also Section 3.3.2. For SR the normalized fitness-weighted VI is used, see also Section 4.3.1.2.

5.1.1 Linear Model

In linear models a logical measure for VI would be the coefficients since they have all the ideal
properties as shown in Table 2.1. We argue that in these experiments the coefficients of a
linear model are readily interpretable as a measure for variable importance, since all variables
have the same range. The coefficients of a linear model are also strict and conservative.
When considering traditional methods, linear models are also reproducible. We argue that
the coefficients are also a universal measure, since the influence to the response is described
problem independent.

When presented with a large data set, is is common that most of the variables are redundant,
and it is desirable to remove them. To see if irrelevant variables will be identified we will
consider a generating function:

y = 10x1 + 10x2 + 5x3 + 1x4 + 0x5 + . . .+ 0x10 (5.1)

Observe that only the first four variables are relevant to the response, and we added six
spurious variables with zero coefficient. This way the methods are tested for strictness, as
defined in Section 2.1. Optimal VIs are expected to correspond to the normalized coefficients,
as shown in Figure 5.1.

 0

 5

 10

 15

 20

 25

 30

 35

 40

N
o
rm

a
liz

e
d
 I
m

p
o
rt

a
n
c
e
s

(%

)

Linear Model

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Figure 5.1: The normalized coefficients from the function given by Equation 5.1. We argue
that for this linear problem VI should reflect this proportions.

5.1.1.1 Sampling Uniformly

For this test we used a data set of 500 points. The shuffle method by which RF computes
the variable importance could capture the same relation, and results are shown in Figure 5.2.
Remarkable is that the x4 variable’s importance is underestimated. This suggests that RF is
strict but not conservative.

Because the discussed variable importance for SR only reflects a variable’s presence, even
though fitness-weighted, it is expected that the relative importances will not be well preserved.
Remark that a population of perfect models would consider all variables equally important.

Chapter 5. Experiments – Comparative Study 58

As can be seen from the results in Figure 5.2 the variable importance of both x3 and x4 is
overestimated. This more conservative behavior safeguards against removing relevant variables,
but might cloud the relative importances. The small importance score for the spurious variables
is due to lower quality models. Their contribution is far less since they are fitness weighted,
but will not be zero.

When adding many extra variables with zero coefficient these conclusions still hold.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

N
o
rm

a
liz

e
d
 I
m

p
o
rt

a
n
c
e
s
 (

%
)

RF - Linear Model - Spurious Variables

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

 0

 5

 10

 15

 20

 25

 30

N
o
rm

a
liz

e
d
 I
m

p
o
rt

a
n
c
e
s
 (

%
)

SR - Linear Model - Spurious Variables

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Figure 5.2: Comparing the results from RF and SR on data generated uniformly according to
Equation 5.1. Observe that RF underestimates variable x4, which was allocated an importance
score close to zero. Also observe that SR overestimates the importance of variable x3 and x4,
and the relevant variables are distinguishable from the spurious variables.

5.1.1.2 Imbalanced Data Set

In real problems the available data might not represent the input space well, as also discussed in
Section 1.2.12.5. We mimic this situation by oversampling a variable such that its distribution
is no longer uniform, here variable x1 is sampled much denser in the interval [0, 0.1]. The
generating function is given by Equation 5.1. A data set of 900 points was used, where the
value of variable x1 was sampled uniformly in [0, 1] for 100 points, and in the interval [0, 0.1]
for the remaining 800 points.

The result obtained with RF is shown in Figure 5.3. We observe that the importance of
variable x1 is underestimated by a large margin.

Since more data points have an x1 value in the interval [0, 0.1], any perturbed data point
is highly likely to be assigned a value from this denser area. And if the point already had a
value for x1 within this interval, little change in the response will be observed resulting in a
low importance score. These findings agree that RF is not conservative.

This contrasts with the findings for SR, also shown in Figure 5.3. It is observed that SR is
less susceptible to changes in variable importance due to an unbalanced data set. We argue
that since SR builds global models and the underlying model is unchanged, the local difference
in density will only slightly influence the variable presence.

Chapter 5. Experiments – Comparative Study 59

 0

 10

 20

 30

 40

 50

 60

 70

 80

N
o
rm

a
liz

e
d
 I
m

p
o
rt

a
n
c
e
s
 (

%
)

RF - Linear Model - Imbalanced Data

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

 0

 5

 10

 15

 20

 25

 30

 35

N
o
rm

a
liz

e
d
 I
m

p
o
rt

a
n
c
e
s
 (

%
)

SR - Linear Model - Imbalanced Data

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Figure 5.3: Comparing the results of RF and SR using an unbalanced data set sampling the
function described by Equation 5.1. Remark that the importances obtained with RF for the
densely sampled variable x1 are significantly lower than when using a uniformly sampled data
set such as in Figure 5.2. While SR also allocates less importance to x1 than before, the same
important variables can be identified as with the uniformly sampled data.

5.1.1.3 Relatively Weak Variables

Here it is examined how both methods deal with variables which are considerably less important
than others, yet not redundant. This test verifies whether the methods are conservative, as
defined in Chapter 2. A data set of 500 points was generated using the function given by
Equation 5.2:

y = 10x1 + 10x2 . . . 10x8 + 1x9 + 0x10 (5.2)

The variable importance produced by RF are shown in Figure 5.4. We observe that the
variable with relatively low coefficient (x9) has an importance close to zero, supporting the
observation that RF is not conservative. In addition the relative importance of the variables
x1 through x8 vary considerably, implying that RF is not universal. Since most variables are
of equal importance neither will consistently provide a better split than its peers, but still
always better than the variable with a low coefficient. The potential splits on the equally
important variables differ only slightly according to the splitting criterion. They will reflect
the distribution of the input variables which might exhibit slight non-uniformities due to the
limited sample size. We argue that the splitting criterion amplifies these slight variations in
density.

The same situation is better handled in SR, of which results are shown in Figure 5.4.
While the importances are not exactly the same, this is expected since the population can
still yield suboptimal models causing a small variation in the importances, even though the
variables are have equal coefficients.

Remark that the importance of a variable with lower coefficient is overestimated. In
the specific case that many significant variables’ contribution is approximately equal, Latent
Variable Symbolic Regression (LVSR) performs better than SR with respect to strictness (see
[77]).

Chapter 5. Experiments – Comparative Study 60

 0

 5

 10

 15

 20

 25

N
o
rm

a
liz

e
d
 I
m

p
o
rt

a
n
c
e
s
 (

%
)

RF - Linear Model - Weak Variables

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

 0

 2

 4

 6

 8

 10

 12

 14

N
o
rm

a
liz

e
d
 I
m

p
o
rt

a
n
c
e
s
 (

%
)

SR - Linear Model - Weak Variables

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Figure 5.4: Comparing the results of RF and SR on data generated uniformly according
to Equation 5.2. While variables x1 through x8 have the same coefficient in the generating
function, we observe significant differences in the importance scores from RF. In addition a
variable (x9) with a small coefficient compared to the rest, is not distinguishable from x10
which is irrelevant noise. Variable x9 is still identified as influential by SR, while the differences
in VI for x1 through x8 is less pronounced.

5.1.1.4 Correlated Irrelevant Variables

Frequently not all variables in a data set are independent, and input variables are correlated.
Such data set was created by adding new variables related to a true variable. In this experiment
variables xi for i = 1, . . . , 10 satisfy Equation 5.1, while variables xj for j = 11, . . . , 20 are
constructed by

xj = 0.9 ∗ x1 + 0.1 ∗Noise (5.3)

where Noise is uniformly distributed in [0, 1]. We used a data set of 500 points.
In RF the variable importances change dramatically as illustrated in Figure 5.5. Because

variables correlated with x1 provide splits of comparable quality they can also be selected as
decision variables instead of the true variable x1, even though this correlated variable might
have coefficient zero in the generating function. This causes x1 to lose its influence over the
prediction path through the tree, resulting in a lower VI score. These findings support the
notion that RF is not conservative.

The best models obtained with SR do not contain the correlated noise variables. But
since those correlated variables can still serve as a surrogate for the true variable to build
rough approximations, they will remain active in the population. Consequently, SR will
always allocate some importance to the noise variables, as can be observed in Figure 5.5. This
indicates that SR is conservative. We argue that this is not conclusive about the strictness
of SR, since even with the overestimated VI of the correlated variables the true important
variables are distinguishable.

We conclude from this experiment that it is possible that the importance of a variable
is artificially low when using RF, if irrelevant variables correlate with it. Those irrelevant
variables will obtain an importance that might even be larger than the true variable. We

Chapter 5. Experiments – Comparative Study 61

explain this by relating the shuffle score to the Gini score and candidate set size in Section
5.2.1.3.

 0

 10

 20

 30

 40

 50

 60

N
o
rm

a
liz

e
d
 I
m

p
o
rt

a
n
c
e
s
 (

%
)

RF - Linear Model - Correlated Variables

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10x11x12x13x14x15x16x17x18x19x20

 0

 5

 10

 15

 20

 25

N
o
rm

a
liz

e
d
 I
m

p
o
rt

a
n
c
e
s
 (

%
)

SR - Linear Model - Correlated Variables

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10x11x12x13x14x15x16x17x18x19x20

Figure 5.5: Comparing the results of RF and SR using correlated variables, the generating
function is described by Equations 5.1 and 5.3. Observe that all variables x11 through x20 are
correlated with x1 and receive a non-zero importance score. While RF actually distributes the
importance of x1 over the correlated variables as explained in the text, importances obtained
by SR can still identify all relevant variables.

5.1.1.5 Correlated Relevant Variables

In an experimental setting there is the realistic possibility that the researcher is not fully free
to choose the input values to a process, due to external constraints. To mimic this situation
we correlated relevant input variables. A data set of 500 points is generated using the function
given by:

y = 10x1 + . . .+ 10x6 + 1x7 + 0x8 + . . .+ 0x10 (5.4)

Where variables are constructed as follows:

xi = 0.5 ∗ x3 + 0.5 ∗Random, for i ∈ {2, 4, 5, 6} (5.5)

Where Random is uniformly distributed in [0, 1]. Remark that x1 is independent of any other
variable.

Results are shown in Figure 5.6. We observe that RF scores x3 very high compared with
other variables with coefficient 10 in the generating function. In addition x7 is not recognized
as important analogously to the experiment from Section 5.1.1.3. The importances obtained
by SR are consistent with earlier experiments. The importance of x7 is overestimated by SR,
but variables with the same coefficient in the generating function have approximately the same
importance score. This more conservative ensures that even variables with a lower influence
will not become extinct in the population.

We conclude from this experiment that it is possible that the importance of a variable is
artificially high when using RF, if other relevant variables correlate with it. This can result in
other independent variables receiving a much lower importance even though they have the
same coefficient in the generating function. We explain this by relating the shuffle score to the
Gini score in Section 5.2.1.4.

The results of RF are consistent with the literature [107], where a conditional VI is proposed
which greatly improves this behavior.

Chapter 5. Experiments – Comparative Study 62

 0

 10

 20

 30

 40

 50

 60

N
o
rm

a
liz

e
d
 I
m

p
o
rt

a
n
c
e
s
 (

%
)

RF - Linear Model - Relevant Correlated Variables

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

N
o
rm

a
liz

e
d
 I
m

p
o
rt

a
n
c
e
s
 (

%
)

SR - Linear Model - Relevant Correlated Variables

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Figure 5.6: Comparing the results of RF and SR on a 500 point data set constructed according
to Equation 5.4 and 5.5. Variable x3 is severely overestimated by RF, while x7 is not recognized
as important. In contrast, importances obtained using SR overestimate x7, and variables with
the same coefficient in the generating function have approximately the same importance score.

5.1.1.6 Noisy Variables

When performing real life experiments it is common for measurements to be corrupted by
noise, such that the true input-output behavior is obfuscated. We mimic such situation by
first creating a 500 point data set by sampling the function given by Equation 5.1. After
computing the exact values for y, we create noisy variables {x̃1, . . . , x̃10} by adding noise to
the true input variables as follows:

x̃i = 0.5 ∗ xi + 0.5 ∗Noise (5.6)

Where Noise is uniformly random in the interval [0, 1].
The results are shown in Figure 5.7. Perhaps surprisingly, the results of RF do not differ

significantly from the earlier noise-free experiment in Section 5.1.1.1. However, this is explained
by the experiments in Section 5.1.1.4. They showed that for finding splits RF does not really
distinguish between a true variable and a variable to which it correlates. This results in a
much coarser interpretation of the data, where only the general trend will matter.

In contrast, the noisy variables pose a challenge to SR, which tries to find an optimal global
model. However, his relationship is obfuscated due to the added noise. While the variables
with highest coefficients in the generating function are still easily identified, the variable with
lowest coefficient (x4) is not distinguishable from noise. This could be an indication there
is room for evolving better models. However, we remark that even the generating function
would have a significant error, and many other models will have a comparable error. This
results in a very high diversity in the population, where models also using irrelevant variables
can attain a relatively high fitness.

Chapter 5. Experiments – Comparative Study 63

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

N
o

rm
a

liz
e

d
 I

m
p

o
rt

a
n

c
e

s
 (

%
)

RF - Linear Model - Noisy Variables

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

 0

 5

 10

 15

 20

 25

 30

N
o

rm
a

liz
e

d
 I

m
p

o
rt

a
n

c
e

s
 (

%
)

SR - Linear Model - Noisy Variables

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Figure 5.7: Comparing results for RF and SR using a noisy data set for samples from the
function given by Equation 5.1. While RF yields the same results as the noise-free experiment
in Section 5.1.1.1, SR is looking for a model obfuscated by the noise. The variable with lowest
coefficient is not distinguishable from noise.

5.1.2 Newton’s Universal Gravitation Law

Now the differences between RF and SR have been shown on data from a simple linear function,
we investigate this differences further using Newton’s universal gravitation law. Recall from
Section 4.2.6.1:

F = G
m1m2

r2
(5.7)

Where F is the force attracting two masses m1 and m2 over a distance r. The constant G is
the gravitational constant:

G = 6.67428× 10−11, with unit N(m/kg)2 (5.8)

The data was generated uniformly in ranges:

0 ≤ m1 ≤ 1, 0 ≤ m2 ≤ 1, 1 ≤ r ≤ 2 (5.9)

As a preliminary test we determine VI using the same data set of 50 points as in Section
4.2.6.1, containing only the three relevant variables. Results are shown in Figure 5.8. Observe
that RF determines a much lower importance for r than SR.

Chapter 5. Experiments – Comparative Study 64

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

N
o

rm
a
liz

e
d
 I
m

p
o
rt

a
n
c
e

s
 (

%
)

RF - Newton

m1 m2 r
 0

 5

 10

 15

 20

 25

 30

 35

 40

N
o

rm
a
liz

e
d
 I
m

p
o
rt

a
n
c
e

s
 (

%
)

SR - Newton

m1 m2 r

Figure 5.8: Comparing results from RF and SR on the 50 point Newton data set with only
relevant variables.

5.1.2.1 Spurious Variables

Analogously to our experiments on a linear model we add many irrelevant variables. Fifty
spurious variables are added sampled uniformly in the interval [0, 1], they do not contribute
to the response in any way. The obtained importances are shown in Figure 5.9. Remark
that only a selection of variables is shown, for RF the 14 most important variables are shown.
Variables not shown on Figure 5.9 all have very low importance scores. Results for SR identify
that variables m1, m2 and r are surely more important than all others. From VI as computed
by RF the importance of variable r is no longer clear, and surprisingly some noise variables
consistently score higher than r.

 0

 5

 10

 15

 20

 25

 30

N
o
rm

a
liz

e
d
 I
m

p
o
rt

a
n
c
e
s
 (

%
)

RF - Newton - Spurious Variables

m1 m2 x13 x29 x34 x7 r x1 x38 x9 x31 x37 x18 x22

 0

 5

 10

 15

 20

 25

 30

 35

N
o
rm

a
liz

e
d
 I
m

p
o
rt

a
n
c
e
s
 (

%
)

SR - Newton - Spurious Variables

m1 m2 r x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

Figure 5.9: Comparing results from RF and SR on the Newton data set with 50 spurious
variables. The importance score from SR correctly identifies the driving variables, while RF
scores some variables that are not relevant to the response higher than the driving variable r.

Different parameter settings of leaf size, candidate set size did not improve the results for
RF. However, increasing the data set size from 50 to 500 did improve the results, as shown
in Figure 5.10. In this case RF does identify only the driving variables, and allocates zero

Chapter 5. Experiments – Comparative Study 65

importance to any spurious variable. This indicates that RF is not suited for very small data
sets.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

N
o
rm

a
liz

e
d
 I
m

p
o
rt

a
n
c
e
s
 (

%
)

RF - Newton - Spurious Variables

m2 m1 r x19

Figure 5.10: Variable importances obtained with RF on the Newton data set with 50 spurious
variables, using 500 sample points. Remark that only the variables relevant to the response
obtain a significant importance score. All variables that are not shown have an importance
equal to or less than variable x19.

5.1.2.2 Imbalanced Data Set

Analogously to the experiments on a linear model we examine the impact of using an imbalanced
data set. We used a data set of 250 points with 10 spurious variables, where variable m1 is
oversampled in the interval [0.45, 0.55].

The results are shown in Figure 5.11 and are consistent with results from Section 5.1.1.2.
The data distribution makes the importance of m1 appear much lower for RF, however, the
driving variables are still clearly distinguishable from the spurious variables. With SR the
importance of m1 is lower than in the experiment from Section 5.1.2.1, but the drop in
importance is not as dramatic as observed for RF.

 0

 10

 20

 30

 40

 50

 60

 70

N
o

rm
a

liz
e

d
 I

m
p

o
rt

a
n

c
e

s
 (

%
)

RF - Newton - Imbalanced Data

m1 m2 r x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

 0

 5

 10

 15

 20

 25

 30

 35

 40

N
o

rm
a

liz
e

d
 I

m
p

o
rt

a
n

c
e

s
 (

%
)

SR - Newton - Imbalanced Data

m1 m2 r x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Figure 5.11: Comparing results for RF and SR using a 250 point data set with 10 spurious
variables, sampling Equation 5.7 where m1 is oversampled in the interval [0.45, 0.55]. The
importance of m1 is severely underestimated when using RF, whereas the loss of importance
is not that pronounced when using SR.

Chapter 5. Experiments – Comparative Study 66

5.1.2.3 Noisy Variables

Analogously to the experiments on a linear model we created a noisy data set of 200 points
with 10 spurious variables, where noisy variables m̃1, m̃2 and r̃ are created as follows:

m̃1 = 0.7 ∗m1 + 0.3 ∗Noise
m̃2 = 0.7 ∗m2 + 0.3 ∗Noise
r̃ = 0.7 ∗ r + 0.3 ∗Noise

(5.10)

Where Noise is uniformly distributed in the interval [0, 1].
The results are shown in Figure 5.12. Similar to the experiment in Section 5.1.1.6, results

do not differ significantly compared with noise-free data for RF. We observe that SR allocates
more importance to spurious variables since the overall quality of the population is lower,
however, the driving variables still score the highest.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

N
o

rm
a

liz
e

d
 I

m
p

o
rt

a
n

c
e

s
 (

%
)

RF - Newton - Noisy Variables

m1 m2 r x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

 0

 5

 10

 15

 20

 25
N

o
rm

a
liz

e
d

 I
m

p
o

rt
a

n
c
e

s
 (

%
)

SR - Newton - Noisy Variables

m1 m2 r x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Figure 5.12: Comparison of results for RF and SR using a 200 point Newton data set, with
10 spurious variables and noise added to the driving variables. The importances of RF do
not differ significantly from the noise-free experiment. Model building is more difficult for
SR resulting in more spurious variables being present in the population, resulting in a higher
importance score for spurious variables.

5.1.2.4 Correlated Irrelevant Variables

Here we add 30 variables correlated with the driving variables. A data set of 150 points was
used, where the correlated variables were generated as follows:

xi = 0.7 ∗m1 + 0.3 ∗Noise, for i = 1, . . . , 10
xj = 0.7 ∗m2 + 0.3 ∗Noise, for j = 11, . . . , 20
xk = 0.7 ∗ r + 0.3 ∗Noise, for k = 21, . . . , 30

(5.11)

Where Noise is uniformly random in the interval [0, 1].
Results are shown in Figure 5.13. Similar to our observations on a linear model the

importance of relevant variables is less pronounced for scores obtained with RF, since correlated

Chapter 5. Experiments – Comparative Study 67

variables will receive high scores as well. In this experiment some noisy variables even obtain
a score higher that the true variable. With SR the true variables are identified, even though
some correlated variables also score relatively high.

 0

 2

 4

 6

 8

 10

 12

N
o

rm
a

liz
e

d
 I

m
p

o
rt

a
n

c
e

s
 (

%
) RF - Newton - Correlated Variables

m1 m2 r x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11x12 x13 x14 x15 x16x17 x18 x19 x20 x21x22 x23 x24 x25x26 x27 x28 x29 x30

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

N
o

rm
a

liz
e

d
 I

m
p

o
rt

a
n

c
e

s
 (

%
) SR - Newton - Correlated Variables

m1 m2 r x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11x12 x13 x14 x15 x16x17 x18 x19 x20 x21x22 x23 x24 x25x26 x27 x28 x29 x30

Figure 5.13: Comparing results from RF and SR on the Newton data set with 30 variables
correlated with the driving variables. Importances obtained by RF do not allow for clear
identification of the driving variables m1, m2 and r, while this is not a problem with SR.

5.1.3 Unwrapped Ball Function

We found the five dimensional unwrapped ball function another interesting non-linear problem.
This function was introduced in [116] and is given by:

y =
10

5 +
∑5

i=1(xi − 3)2
(5.12)

The variable importances of this function are of interest, since the expression implies
that all variables should be equally important. This is in a sense a non-linear version of our
experiment in Section 5.1.1.3.

We created a data set of 1024 points where points were uniformly sampled in ranges:

0.05 ≤ xi ≤ 6.05, for i ∈ {1, . . . , 5} (5.13)

Results are shown in Figure 5.14. We observe that RF and SR agree on the order of
importance. Although the variables should be equally important judging by the generating
formula, neither RF nor SR score all variables equally. We attribute this to random sampling
fluctuations, and this will be confirmed in Section 5.3.3.

Chapter 5. Experiments – More on Random Forest 68

 0

 5

 10

 15

 20

 25

N
o
rm

a
liz

e
d

 I
m

p
o
rt

a
n
c
e

s
 (

%
)

RF - UBall

x1 x2 x3 x4 x5

 0

 5

 10

 15

 20

 25

N
o
rm

a
liz

e
d

 I
m

p
o
rt

a
n
c
e

s
 (

%
)

SR - UBall

x1 x2 x3 x4 x5

Figure 5.14: Comparing results from RF and SR on the five dimensional unwrapped ball data
set. We observe that neither RF nor SR score all variables equally, but they agree on the
order of importance. For this function this indicates that the data sampling is not perfectly
uniform, as will be demonstrated in Section 5.3.3.

5.2 More on Random Forest

In Section 3.3 we mentioned several measures of VI in RF, which we briefly recall here:

Shuffle – The change in prediction error introduced by perturbing the out-of-bag data.

Gini – The accumulation of the splitting criterion for a variable, giving an impression of how
well a variable can split the data.

Splits – The number of splits on a variable is not a good measure of importance on its own,
but will be instrumental to our discussion.

We revisit some experiments from the comparative study in Section 5.1 and explain in the
behavior of the VI in detail.

5.2.1 Linear Model

Recall that this experiment was determining VI using a uniformly sampled data set for the
generating function given by Equation 5.1, shown again here:

y = 10x1 + 10x2 + 5x3 + 1x4 + 0x5 + . . .+ 0x10 (5.14)

The Gini measure and number of splits is shown in Figure 5.15. Here we observe that
variables with a lower coefficient in the generating function will have a lower Gini index. The
effect is that variable x4 will only be the preferred variable to split on if all other candidates
are spurious variables, since the variables x1, x2, and x3 will always outperform x4. Remark
that x4 is not split on more than an irrelevant variable.

We also observe that variable x3 has a low importance score even though it has more splits
compared to an irrelevant variable. Using a similar argument, splits on x3 will only happen if

Chapter 5. Experiments – More on Random Forest 69

neither x1 or x2 are in the candidate set. Except for nodes lower in the tree, closer to leaf
nodes. However, such splits do not alter the prediction path much when shuffling the data in
that variable, explaining the lower importance given by the shuffle techniques.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

N
o

rm
a

liz
e

d
 I

m
p

o
rt

a
n

c
e

s
 (

%
)

RF - Linear Model

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Shuffle Gini Splits

Figure 5.15: Other measures explaining the behavior of RF on a linear model given by Equation
5.14. Observe that variables with a lower coefficient in the generating function will be split
less. Variable x3 will only be chosen as a decision variable in the lower areas of the tree where
the influence on the prediction path is lower, resulting in a lower shuffle score.

5.2.1.1 Imbalanced Data Set

Recall that this experiment used the same generating function as the previous section, but
used an imbalanced data set where variable x1 was sampled with much higher density in a
small interval.

The Gini measure and number of splits is shown in Figure 5.16. We observe that splits on
x1 are far less common than when using a uniformly sampled data set. Although x1 is still
being split more that a spurious variable, implying that the prediction model is not per se
faulty.

Consider the values of variable x1. After the cluster is identified with a few initial splits,
little information is gained by splitting x1 further. This will allow the other variable with high
coefficient (x2) to always provide splits superior to any other variable, as indicated by its Gini
score.

By the design of the shuffle technique, x1 will not achieve a high importance score. Since
more data points have an x1 value in the interval [0, 0.1], any perturbed data point is highly
likely to be assigned a value from this denser area. And if the point already had a value for x1
within this interval, little change in the response will be observed resulting in a low importance
score. We refer to a later experiment in Section 5.3.1.1 where we confirm this behavior using
a perfect model.

Chapter 5. Experiments – More on Random Forest 70

 0

 10

 20

 30

 40

 50

 60

 70

 80

N
o

rm
a

liz
e

d
 I

m
p

o
rt

a
n

c
e

s
 (

%
)

RF - Linear Model - Imbalanced Data

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Shuffle Gini Splits

Figure 5.16: Other measures explaining the behavior of RF on a linear model given by Equation
5.14, using an imbalanced data set. Remark that variable x1 no longer provides good splits
despite its high coefficient in the generating function, as indicated by its low Gini score. The
lower number of splits on x1 lower the influence on the predictive path, resulting in a lower
shuffle score.

5.2.1.2 Relatively Weak Variables

Recall that this experiment used the generating function given by:

y = 10x1 + 10x2 . . . 10x8 + 1x9 + 0x10 (5.15)

The Gini measure and number of splits is shown in Figure 5.17. We observe that some
variables deliver better splits than others, even though their coefficient in the generating
function is the same. We attribute this to small structural defects in the random sampling of
the input space.

The decision variable is chosen to be the variable that delivers the best split, irrespectively
of how much the split is better compared to other candidates. This allows small structural
defects to consistently favor the same variables early in the model construction, even though
the difference with other variables is minimal. A variable consistently obtaining early splits
influences the prediction path of perturbed points more, resulting in a higher shuffle score.

5.2.1.3 Correlated Irrelevant Variables

Recall that this experiment used the same generating function as the previous section, but
variables x11 through x20 where added. These extra variables are correlated with x1.

The Gini measure and number of splits is shown in Figure 5.18. We observe that splits on
x1 are far less common compared to the previous section. The correlated variables will provide
good splits, as indicated by their higher Gini index compared with the irrelevant variables x5
through x10.

The candidate set size will be 7 in this experiment, which is the default |d|/3 value. The
correlated variables are numerous, implying that most of the time at least one of them will be

Chapter 5. Experiments – More on Random Forest 71

in the candidate set. In case x1 is not present in the same candidate set, one of the correlated
variables has a high probability to be the decision variable. In effect they will compete with
variable x1. Since the correlated variables are numerous and deliver the same information as
x1, variable x1 will be at a disadvantage.

 0

 5

 10

 15

 20

 25

N
o

rm
a

liz
e

d
 I

m
p

o
rt

a
n

c
e

s
 (

%
)

RF - Linear Model - Weak Variables

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Shuffle Gini Splits

Figure 5.17: Other measures explaining the behavior of RF on a linear model given by Equation
5.15, where the coefficients of x1 through x8 are the same. Even though the number of splits
is not that different, the Gini index is. This implies that some variables will be preferred,
causing them to split the data early in the tree – close to the root. This will result in a greater
difference in the prediction path, resulting in a higher shuffle score.

 0

 10

 20

 30

 40

 50

 60

N
o

rm
a

liz
e

d
 I

m
p

o
rt

a
n

c
e

s
 (

%
)

RF - Linear Model - Correlated Variables

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

Shuffle Gini Splits

Figure 5.18: Other measures explaining the behavior of RF on a linear model using correlated
variables. The correlated variables will compete with variable x1 for the same splits. Since
the correlated variables are numerous and deliver the same information as x1, variable x1 will
be at a disadvantage.

Chapter 5. Experiments – More on Random Forest 72

5.2.1.4 Correlated Relevant Variables

Recall that this experiment used the generating function given by:

y = 10x1 + . . .+ 10x6 + 1x7 + 0x8 + . . .+ 0x10 (5.16)

Where variables x2, x4, x5, and x6 are correlated with x3.
The Gini measure and number of splits is shown in Figure 5.19. We observe that the

number of splits on x3 does not differ from the splits on a variable with equal coefficient (x1)
in the generating function. This implies the difference in importance score is due to other
factors.

We observe that the Gini score for x3 is much higher than any other variable. This is
explained by the correlation of the other variables with x3. This will in effect inflate its
coefficient, resulting in the information gain criterion always preferring x3 and assigning a
high Gini score.

The prediction path of a perturbed data point is interesting. If the new value of x3 causes a
different decision to be made at any node where x3 is the decision variable, the new prediction
will differ significantly. Since the correlated variables are similar to x3 in terms of input-output
behavior in the original data, a decision on x3 describes the influence of all those variables
combined. So, a different prediction path will predict a very different area of the input space
resulting in a high shuffle score.

 0

 10

 20

 30

 40

 50

 60

N
o

rm
a

liz
e

d
 I

m
p

o
rt

a
n

c
e

s
 (

%
)

RF - Linear Model - Relevant Correlated Variables

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Shuffle Gini Splits

Figure 5.19: Other measures explaining the behavior of RF on a linear model given by Equation
5.16, where other relevant variables where correlated with x3. Remark that x3 outperforms
any other variable even though its coefficient in the generating function is the same as variables
x1 through x6.

Chapter 5. Experiments – More on Random Forest 73

5.2.2 Newton’s Universal Gravitation Law

Observations similar to the previous sections can be made for the Newton problem, so results
for correlated variables, imbalanced data are not shown. Recall the generating function:

F = G
m1m2

r2
(5.17)

Where F is the force attracting two masses m1 and m2 over a distance r. The constant G is
the gravitational constant:

G = 6.67428× 10−11, with unit N(m/kg)2 (5.18)

The Gini measure and number of splits is shown in Figure 5.20, obtained with the same
data set as Figure 5.8. We observe the number of splits is equal, which is to be expected since
the default candidate size is |d|/3, hence one in this experiment.

We speculate that variable r provides less opportune splits due to its limited domain. The
combination of m1 and m2 have the potential to cause a much more change to the response
compared to r2, due to the difference in sampling domain.

 0

 10

 20

 30

 40

 50

 60

N
o
rm

a
liz

e
d
 I
m

p
o
rt

a
n
c
e
s

RF - Newton

m1 m2 r

Shuffle
Gini

Splits

Figure 5.20: Other measures explaining the behavior of RF on the Newton problem. The
difference in sampling domain of r compared with m1 and m2 prevents r from being identified
as at least as important.

Chapter 5. Experiments – More on Expression Trees 74

5.3 More on Expression Trees

In Section 4.3.2 we mentioned several measures that could help identifying important variables
when applied to algebraic expressions. This section will further investigate the impact of each
measure on several problems. We briefly recall the measures applicable on expressions:

Derive – The accumulated partial derivative over the available data points.

Mean – The prediction error made by substituting a variable with its mean.

Eliminate – The prediction error made when eliminating a variable from the expression.

Shuffle – The prediction error when shuffling the data in one dimension.

We revisit some experiments from the comparative study in Section 5.1 and find out how these
measures perform.

5.3.1 Linear Model

Recall that this experiment was determining VI using a uniformly sampled data set for the
generating function given by Equation 5.1, shown again here:

y = 10x1 + 10x2 + 5x3 + 1x4 + 0x5 + . . .+ 0x10 (5.19)

We first use a uniformly sampled data set, results for all measures are shown in Figure 5.21.
We observe all measures agree on the relative importances, indicating that further experiments
are needed to uncover their differences.

While the results for ‘Shuffle’ in Figure 5.21 correspond to results obtained with RF, we
note that RF uses the SSE as error function. In order for the importances to be comparable
to the coefficients of the generating function, this error function should be the RMSE as
shown in Figure 5.22. We observe that using the RMSE in RF would be undesirable since the
importance of an irrelevant variable with a small score would be inflated. The square root
affects high importance scores more than low importance scores, such that variables with a
higher importance score would be harder to distinguish from variables with a low importance
score. We note that the square root is order preserving, thus selecting k variables with highest
importance would yield the same result, irrespectively of whether the SSE or RMSE was used.
In order for the ‘Shuffle’ to be comparable with earlier experiments, we opt to use the SSE in
the rest of this section.

5.3.1.1 Imbalanced Data

Recall that this experiment used the same generating function as the previous section, but
used an imbalanced data set where variable x1 was sampled with much higher density in a
small interval.

Results for all measures are shown in Figure 5.23. Remark that the ‘Derive’ measure is
not influenced by the data distribution, since the partial derivative of this linear model will
be a constant exactly corresponding to the coefficient in the generating function. All other
measures are influenced by the data distribution.

We observe that the ‘Shuffle’ and ‘Mean’ method agree on the importance but underestimate
variable x1. In the previous experiments with RF on this data we already observed this, but

Chapter 5. Experiments – More on Expression Trees 75

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50
N

o
rm

a
liz

e
d
 I
m

p
o
rt

a
n
c
e
s
 (

%
)

ExpressionVI - Linear Model

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Shuffle, SSE
Mean, SSE

Eliminate, SSE
Derivative

Figure 5.21: Comparing the results for different expression based metrics on a linear model
given by Equation 5.19, using uniformly sampled data. We observe all measures agree on the
relative importances, indicating that they all could be potentially interesting. However we
note that the derivative is expected to be the optimal importance for this problem, while the
other measures differ. This is a result of using the SSE error function. Using the RMSE would
be a better match with the coefficients, as shown in Figure 5.22.

 0

 5

 10

 15

 20

 25

 30

 35

 40

N
o
rm

a
liz

e
d
 I
m

p
o
rt

a
n
c
e
s
 (

%
)

ExpressionVI - Linear Model

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Shuffle, RMSE
Mean, RMSE

Eliminate, RMSE
Derivative

Figure 5.22: Using the same data as for Figure 5.21, but now using the RMSE as error function.
We observe that the importances are all in agreement with the ‘Derive’ measure, which would
be the optimal importance measure for this problem. In the text we provide reasons not to
use the RMSE in conjunction with RF.

Chapter 5. Experiments – More on Expression Trees 76

the use of the expression makes all the difference. By using the generating function directly, it
is as if we use a perfect model. Hence we can be sure that this behavior is due to the definition
of the ‘Shuffle’ procedure and not a modeling artifact introduced by RF.

The ‘Eliminate’ technique will overestimate x1, since eliminating x1 in this expression
according to the rules introduced in Section 4.3.2.3 would be equivalent to substituting the
value one. Considering the mean of x1 is very low due to the high density in the interval
[0, 0.1], substituting by one introduces a larger error compared with the other variables whose
mean is 0.5 since they are uniformly sampled in [0, 1].

 0

 10

 20

 30

 40

 50

 60

 70

N
o
rm

a
liz

e
d
 I
m

p
o
rt

a
n
c
e
s
 (

%
)

ExpressionVI - Imbalanced Data

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Shuffle, SSE
Mean, SSE

Eliminate, SSE
Derivative

Figure 5.23: Comparing the results for different expression based metrics on a linear model
given by Equation 5.19, using an imbalanced data set. We observe that ‘Shuffle’ yields the
same results as when used in conjunction with RF, indicating that the underestimation of x1
is not a modeling artifact of RF.

5.3.1.2 Correlated Relevant Variables

Recall that this experiment used the generating function given by:

y = 10x1 + . . .+ 10x6 + 1x7 + 0x8 + . . .+ 0x10 (5.20)

Where variables x2, x4, x5, and x6 are correlated with x3.
Results for all measures are shown in Figure 5.24. Remark that the ‘Derive’ measure is

not influenced by variable correlations, since the partial derivative of this linear model will be
a constant exactly corresponding to the coefficient in the generating function.

We observe again that the ‘Shuffle’ and ‘Mean’ measures agree on the importances. However,
in contrast to experiments with RF in Section 5.2.1.4, we observe that the ‘Shuffle’ scores
now make more sense. Here the importance of x1 and x3 is equal, as expected by their
equal coefficients in the generating function. While all variables x1 through x6 have the same
coefficient, the correlated variables can be considered less important because the information
they add is not independent.

Chapter 5. Experiments – More on Expression Trees 77

 0

 5

 10

 15

 20

 25

 30

N
o
rm

a
liz

e
d
 I
m

p
o
rt

a
n
c
e
s
 (

%
)

ExpressionVI - Relevant Correlated Variables

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Shuffle, SSE
Mean, SSE

Eliminate, SSE
Derivative

Figure 5.24: Comparing the results for different expression based metrics on a linear model
given by Equation 5.20, using an imbalanced data set. We observe that ‘Shuffle’ yields the
same results as when used in conjunction with RF, indicating that the underestimation of x1
is not a modeling artifact of RF.

5.3.2 Newton’s Universal Gravitation Law

Observations similar to the previous sections can be made for the Newton problem, so results
for correlated variables, imbalanced data are not shown. Recall the generating function:

F = G
m1m2

r2
(5.21)

Where F is the force attracting two masses m1 and m2 over a distance r. The constant G is
the gravitational constant:

G = 6.67428× 10−11, with unit N(m/kg)2 (5.22)

Results for all measures are shown in Figure 5.25. We observe again that the ‘Shuffle’ and
‘Mean’ measure agree on the importances.

For this problem, eliminating any variable according to the rules as introduced in Section
4.3.2.3 would be equivalent to substituting the value one. For variable r this results a
denominator of one, while substituting the mean would result in a denominator of 1/4.
Consequently, the elimination will introduce a larger error than substituting the mean, so the
‘Eliminate’ score is higher than the ‘Mean’ score.

5.3.3 Unwrapped Ball Function

Recall that this experiment used the generating function given by:

y =
10

5 +
∑5

i=1(xi − 3)2
(5.23)

And that variable importances are expected to be equal. In our earlier experiment in Section
5.1.3 we observed that the importance score was not equal for all variables. We will first use

Chapter 5. Experiments – Discussion 78

 0

 10

 20

 30

 40

 50

 60

 70

N
o
rm

a
liz

e
d
 I
m

p
o
rt

a
n
c
e
s
 (

%
)

ExpressionVI - Newton

m1 m2 r

Shuffle, SSE
Mean, SSE

Eliminate, SSE
Derivative

Figure 5.25: Comparing the results for different expression based metrics on the Newton
problem. We observe that ‘Shuffle’ yields the same results as when used in conjunction with
RF, indicating that the underestimation of r is not a modeling artifact of RF. The lower score
of ‘Derive’ also indicates the lower score of r is to be expected for these input ranges.

the same data set and compute expression based importances. Results for all measures are
shown in Figure 5.26. Even with the exact expression, the fluctuations in score is still present.

To show that the data distribution is influential, we repeat the experiment with a data set
sampling on an equidistant grid. Results for all measures are shown in Figure 5.27. We observe
that all measures report exactly the same importances. This confirms that the fluctuations in
importance were due to the sampling distribution and not the underlying model.

5.4 Discussion

From experiments on expression trees we identified that replacing a variable by its mean, is
equivalent with the shuffling technique. However, in RF replacing a variable by its mean
would be too restrictive. This would effectively disable some region in a decision tree, since
the outcome of any comparison against the decision value for the variable under study will be
known a priori. By using the shuffling method, the comparisons can still differ for another
permutation of values. Moreover this allows the permuted value for that variable to vary per
tree, which increases diversity in the prediction.

Chapter 5. Experiments – Discussion 79

 0

 5

 10

 15

 20

 25

N
o
rm

a
liz

e
d
 I
m

p
o
rt

a
n
c
e
s
 (

%
)

ExpressionVI - UBall5D

x1 x2 x3 x4 x5

Shuffle, SSE
Mean, SSE

Eliminate, SSE
Derivative

Figure 5.26: Comparing the results for different expression based metrics on the UBall problem
using a randomly sampled data set. We observe that fluctuations in the importance are present,
although all variables are expected to be equally important. This is due to the randomly
sampled data set.

 0

 5

 10

 15

 20

 25

N
o
rm

a
liz

e
d
 I
m

p
o
rt

a
n
c
e
s
 (

%
)

ExpressionVI - UBall5D Grid Input Set

x1 x2 x3 x4 x5

Shuffle, SSE
Mean, SSE

Eliminate, SSE
Derivative

Figure 5.27: Comparing the results for different expression based metrics on the UBall problem
using a data set sampled on an equidistant grid. We observe that all importances are equal,
confirming that the fluctuations were due to the random sampling.

Chapter 5. Experiments – Summary 80

5.5 Summary

In this chapter we have shown how different importance measures react on different problem
configurations, specifically correlated variables and imbalanced data. We have compared
symbolic regression (SR) and random forests (RF).

In general SR performed well throughout all tests. We observed that SR favors a conserva-
tive approach, in other words variables will be rather overestimated than underestimated. This
was most notable for the test with a noisy data set, where SR could identify most important
variables when using a noisy data set but one variable with low importance could not be
distinguished from noise. The noise causes models not resembling the generating function to
be assigned a higher fitness. This allows irrelevant variables to survive, and those variables
receive a higher importance score. While RF did not identify that variable either, RF is robust
to noise in the data set.

We have observed that RF showed several curious properties when handling correlated
variables, such that a variable can be either over- or underestimated depending on the
correlation structure of the data. In some cases this was explained by the split criterion used
for tree construction, in particular relevant correlated variables were favored by the splitting
criterion thus inflating its importance score. This property was not present when testing with
the same data set and using the exact expression, confirming that this is caused by the tree
construction and not by the shuffle technique.

We have shown that RF uses the SSE error function, whereas the RMSE is a better option
when comparing importances with coefficients in a linear generating function. However, in
general it is preferable to use the SSE in RF, as to clearly distinguish between important and
irrelevant variables. We note that the importance ranking remains the same when using either
SSE or RMSE.

We have shown that a variable is underestimated by RF when using an imbalanced data
set, but that this is by design of the shuffle technique and not the model creation.

Chapter 6

Case Studies

6.1 Human Development Index

Human development is an important and interesting subject, more so because it concerns
every human on the planet. Many social, economical and personal factors are combined in a
single number known as the Human Development Index (HDI) [83]. This index is an indicator
expressing the general quality of life of the human population but not limited to material
well-being. It uses three dimensions of development: health, knowledge, income. Health is
measured by life expectancy at birth. Knowledge is measured by combining the expected years
of schooling for a school-age child in a country today with the mean years of prior schooling
for adults aged 25 and older. Income is measured in purchasing power adjusted per capita
gross national income. These three dimensions are then combined using the geometric mean.

The HDI is not perfect, but the data collected in the process surely holds information and
is subject of active research [84].

In this case study the variable importances obtained by RF and SR are compared, when
estimating several parameters from the HDI data set. The initial data set is available at [83]
and contains many missing values.

While RF can produce a proximity matrix by which missing values could be filled in, it
seemed prudent to pre-process the data set independent of the methods to be compared. The
data set was pre-processed as follows: If a value was missing for a specific variable in more
than 50 countries, the variable was removed. If a country had more than 30 missing values on
the remaining variables, the country was removed. The remaining missing values were replaced
by the average value over countries within the same development group (low, medium, high,
very high developed country). In addition the variable ’antenatal care’ was removed because
no data was available for any country in the very high developed group.

The variables ’Total Satisfaction Freedom of Choice’, ’Total Purposeful Life’ are modeled
because any relationship between the development of a country and perceived freedom
and purpose would be interesting. For both these variables data was collected through
questionnaires were participants were asked whether they were satisfied with their freedom
of choice, or whether they find their lives purposeful, respectively. The percentage of the
population answering ’yes’ to either question is the response variable. Remark that the data
set provides both a total percentage and a percentage for the female population to make
comparison across genders possible. Only the total percentage is modeled and the female
percentage is removed a priori, since this variable holds exactly the same information.

81

Chapter 6. Case Studies – Human Development Index 82

The ’GDP per Capita’ was also modeled to compare both techniques on a non-linear
problem. The Gross Domestic Product (GDP) is the value of all products and services
produced within a country in a year. This is divided by the population to make international
comparison possible, considering that more people are able to produce more value. While
the explicit formula is known in this case and the true variables GDP and population are
present in the data set, the difficulty lies in extracting the two relevant variables from the
many irrelevant but correlated variables. The variable GNI per Capita is removed a priori,
this variables by itself approximates GDP per Capita.

1

0

−1

Figure 6.1: The correlation matrix of the HDI data set. Every square represents the correlation
between two variables i and j where (i, j) is the index of that square in the matrix. We observe
that many variables are correlated.

All modeling was performed on a quad-core i7 machine operating at 3Ghz, with a memory
capacity of 12 GB. Other parameters are given in the sections discussing the results for the
corresponding response variable.

Chapter 6. Case Studies – Human Development Index 83

Very High Human Development

High Human Development

Medium Human Development

Low Human Development

æ
ææ

æ

æ

æ

æ

ææ

æ

æ
æ
æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

à

à

à

à

à

à

à

à

à

à
à
à

à

à

à

à

à
à

à
à

à
à

à

à

à

à

à

à

à

à

à

à

àà

à
à

à

à

ì

ì

ì

ì

ì
ì
ì

ì

ì

ì

ì

ì

ì
ì

ì

ìì

ì

ì

ì
ì

ì

ì

ì
ì

ì
ì

ì

ì

ì

ì

ò

ò

ò

ò

ò

òò

òò

ò

òò
ò

ò

ò

ò

ò

òò

ò

ò

ò

ò
ò

ò

ò

ò
ò

ò

ò

ò

òò
ò

ò
ò

ò

0.2 0.4 0.6 0.8

65

70

75

80

85

90

95

100

HDI Value

P
u
rp

o
se
fu
ll
L
if
e
%

Figure 6.2: The HDI plotted versus Purposeful Life. Countries with a higher HDI score less
on average due to higher variance in Purposeful Life.

æææ

ææ
æ
ææ
æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ
æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à
à

à

à

à

à

à

à

à

à

à

à

à

à

àà
à
à

à

à

ì

ì

ì

ì

ì

ì
ì

ì
ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ìì

ì

ìì
ì

ì
ì

ì

ì

ì

ì

ì

ò
ò

ò
ò

ò
ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò
ò

ò

ò
ò

ò

ò

òò

ò

ò

ò

ò

ò

ò

òò

ò

ò

ò

ò

0.2 0.4 0.6 0.8

0

20

40

60

80

HDI Value

F
r
e
e
d
o
m

o
f
C
h
o
ic
e
%

Figure 6.3: The HDI plotted versus Freedom of Choice Satisfaction. The higher developed
countries score higher. The variance is large for all development levels.

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æà
àà

à

à

à

à

à
à

à

à
àà

à

ààààà

à
à
ààà

à
à
à

à

à

ààààààà

à

àìììì
ì
ììì

ì

ììììì
ì
ììì
ì
ì
ìì
ìììììììì

ì
òòòòòòòòòòòòòòòò

ò
òòòòòòòòòòòòòòòòòòòò

0.2 0.4 0.6 0.8
0

20

40

60

HDI Value

G
D
P

p
e
r
C
a
p
it
a
H
K
L

Figure 6.4: The HDI plotted versus the GDP per Capita, which is closely related to the
IncomeIndex, one of the three dimensions of the HDI.

Chapter 6. Case Studies – Human Development Index 84

RF Parameter Value

Number of trees 1000
In-Bag data 2/3
Leaf Size 5
Candidate set size |d|/3

SR Parameter Value

Independent Runs 4
Time Constraint/ Run 1 hour
Accuracy Measure 1−R2

Complexity Measure sum of sub-tree sizes

Table 6.1: Parameter values used for modeling the Purposeful Life and Freedom of Choice
response variables.

6.1.1 Purposeful Life

The relation between country development and Purposeful life is illustrated in Figure 6.2.
Remark that countries with a higher HDI exhibit a larger variance in the Purposeful Life.

Importances obtained by SR displayed in Figure 6.6, models of good quality showed a linear
relation between variables. The SR variable importances suggest that the most important
variables determining whether life is perceived as purposeful are: HospitalBeds, Fertility, Age,
MaternityLeave, Undernourishment. We roughly relate these variables to health, children and
food. We find these factors not unreasonable in order to enjoy a purposeful life.

Importances obtained by RF are shown in Figure 6.6. It is observed only the most important
variables are similar to those identified by SR, and variables with a lower importance are
incomparable. Since the underlying model was suggested to be linear by SR the remarks of
experiments conducted in the previous section are applicable here.

The parameter values from Table 6.1 were used to model Purposeful Life.

6.1.2 Freedom of Choice

The relation between country development and Satisfaction Freedom of Choice is presented in
Figure 6.3. While the higher developed countries score higher, a large variance is observed.

Importances obtained by SR are shown in Figure 6.5, models of good quality showed
a linear relation between variables. The SR variable importances suggest that the most
important variables determining the satisfaction with ones freedom of choice are: Standard of
Living Satisfaction, Healthcare Satisfaction, Respect, Employment, Air and Water Quality. So
this one satisfaction variable aggregates information of different aspects in life. Again these
variable importances intuitively make sense.

Importances obtained by RF are visualized in Figure 6.5. The most important variables
agree with those found by SR with variations in relative importance, but variables with lower
importances are different. For example the Income Gini Coefficient has a relatively high
importance score, while this variable is not present at all in the top 20 important variables
obtained with SR. In the absence of domain expertise this can have a significant impact on
a decision making process. This illustrates caution is warranted when performing variable
selection, and consulting multiple methods is advised.

The parameter values from Table 6.1 were used to model Freedom of Choice.

Chapter 6. Case Studies – Human Development Index 85

HealthCareQualitySatisfactionPercen t

StandardOfLivingSatisfactionPercen t

WaterQualitySatisfactionPercen t

EducationSystemSatisfactionPercen t

TotalSatisfaction

FemaleTreatedWithRespect

IncomeGin iCoeff2010

TotalTreatedWithRespect

FemalePu rposefu llLifePercen t

JobSatisfactionPercen t

PersonalHealthSatisfactionPercen t

TotalPu rposefu llLifePercen t

InequalityIncomeIndex2010

AirQualitySatisfactionPercen t

FemaleSatisfaction

In ternetUsersPercen t

GNIRankMinusHDIRank2010

GDPPerCap ita

PoliticalEngagemen tPercen t2008

Labou rForceParticipationRateFemale2008

5 10 15 20

Freedom of Choice

RF Importances

StandardOfLivingSatisfactionPercen t

FemaleTreatedWithRespect

PoliticalEngagemen tPercen t2008

HealthCareQualitySatisfactionPercen t

FemaleSocialNetwork

PhysicianPer10k

TonnesCO2EmissionsPerCap ita2006

WaterQualitySatisfactionPercen t

FertilityRate20102015

GNIPercen tSavings2008

AirQualitySatisfactionPercen t

MaternalMortalityRatio2008

ProtectedAreaPercen t2009

NoImmuneVsMeaslesPercen t

Employmen tRatio1991

HIVMaleYou th

TonnesCO2EmissionsPerCap ita1990

Assau ltVictims

FemalePu rposefu llLifePercen t

HIVAdu lts

2 4 6 8

Freedom of Choice

SR Importances

Figure 6.5: Importances obtained with RF and SR modeling Freedom of Choice, using the
parameter values given in Table 6.1.

MedianAge2010

FertilityRate19901995

MedianAge1990

Hosp italBeds

SexRatioAtBirth1990

IncomeGin iCoeff2010

InequalityHDI2010

InequalityIncomeIndex2010

RDExpenditu reGDP

SexRatioAtBirth2010

Adolescen tFertilityRate2008

Popu lationGrowth20102015

Adu ltLiteracyRate

DependencyRatio1990

FoodDeprivation In tensityPercen t2004

FemaleFreedomOfChoiceSatisfaction2009

FemaleTreatedWithRespect

Employmen tRatio2008

PersonalHealthSatisfactionPercen t

FertilityRate20102015

5 10 15

Purposeful Life

RF Importances

Hosp italBeds

FertilityRate19901995

EducationExpenditu reGDP

GrossFixedCap italFormationGDP

PopSecondaryEdPercen t

Adolescen tFertilityRate2008

Matern ityLeave

NetSecondEnrolmen tRatio

Undernou rishmen tPercen t1990

MedianAge2010

BroadbandSubscrip tionsPercen t

ProtectedAreaPercen t2009

Popu lationSecondaryEdPercen tageMale2010

AttendedBirth s

Popu lation1990

Popu lationGrowth20102015

Labou rForceParticipationRateFemale2008

EducationSystemSatisfactionPercen t

AirQualitySatisfactionPercen t

GNIPercen tSavings2008

2 4 6 8 10

Purposeful Life

SR Importances

Figure 6.6: Importances obtained with RF and SR modeling Total Purposeful Life, using the
parameter values given in Table 6.1.

Chapter 6. Case Studies – Human Development Index 86

6.1.3 GDP per Capita

The relation between country development and GDP per Capita is shown in Figure 6.4.
Importances obtained by five SR runs of two minutes are presented in Figure 6.7. While

neither GDP nor Population scores high in importance, it is noted that the explicit formula
GDP/Population was retrieved in a few models. But since the majority of the population
achieved a much lower level of quality, they will obscure these variables even though the
importance is fitness weighted. This is an example of why models of sufficient quality should
be used to estimate importances, and highlights the consequences of not doing so.

Importances obtained by RF are displayed in Figure 6.7. Neither the GDP nor Population
variable is present in the top 20 most important variables, as was the case with SR. However,
we observe that correlated variables dominate other variables. Many variables with ’HDI’ in
their name are correlated, and are also correlated with the GDP per Capita. This agrees with
findings in other research regarding RF variable importance with correlated variables [107].

Importances obtained by five SR runs of twenty minutes are presented on the left graph
in Figure 6.7. Both GDP and Population score high in importance, and it is observed that
the majority of models are of high quality. By considering only members of the Pareto front,
instead of the whole population, the importances shown on the right graph in Figure 6.7 are
obtained. The two most important variables are now the GDP and Population, as is desirable
in this problem setting. This demonstrates that when models are of sufficient quality, the
estimated variable importances are more reliable.

RF Parameter Value

Number of trees 1000
In-Bag data 2/3
Leaf Size 5
Candidate set size |d|/3

SR Parameter Value

Independent Runs 5
Time Constraint/ Run 20 minutes
Accuracy Measure 1−R2

Complexity Measure sum of sub-tree sizes

Table 6.2: Parameter values used for modeling the GDP per Capita response variable. For
symbolic regression we explore two series of runs, where the time constraint per run is either
two or twenty minutes.

Chapter 6. Case Studies – Human Development Index 87

IncomeIndex2010

HDIRank2005

HDIValue2010

HDIRank

LifeExpectancyBirth Index2010

InequalityHDI2010

LifeExpectancyBirth2010

HealthExpenditu rePerCap ita2007

HDIValue2009

InequalityLifeExpectancyBirth Index2010

HDIRank2009

MaleMortality

FemaleMortality

InequalityIncomeIndex2010

InequalityHDIRank2010

EcologicalFootp rin t2006

Developmen tAssistanceGNI

RDExpenditu reGDP

EdDropou tRate

GrossTertiaryEnrolmen tRatio

2 4 6 8

GDP per Capita

RF Importances

HealthExpenditu rePerCap ita2007

ToddlerMortality

In ternetUsersPercen t

InequalityIncomeIndex2010

GenderInequalityValue2008

PhoneSubscrip tions

TonnesCO2EmissionsPerCap ita2006

BroadbandSubscrip tionsPercen t

TotalFreedomOfChoiceSatisfactionPercen t2009

TotalRem ittanceIn flowPerCap ita

IncomeIndex2010

Developmen tClass

TotalSocialNetwork

StandardOfLivingSatisfactionPercen t

EducationSystemSatisfactionPercen t

HDIRank

ExpectedYearsSchool2010

HDIRank2009

InequalityHDI2010

PersonalHealthSatisfactionPercen t

5 10 15 20 25

GDP per Capita

SR Importances

Figure 6.7: Importances obtained with RF and SR modeling GDP per Capita, using the
parameter values given in Table 6.2. For SR these results correspond to five independent runs
of two minutes.

GDP

HealthExpenditurePerCapita2007

Population2010

StandardOfLivingSatisfactionPercent

InequalityIncomeIndex2010

TonnesCO2EmissionsPerCapita2006

PhoneSubscriptions

AdultLiteracyRate

ToddlerMortality

HDIRank2005

TaxRevenueGDP

MedianAge2010

DependencyRatio1990

Population1990

FoodDeprivationIntensityPercent1990

InternetUsersPercent

GenderInequalityIndex2008

HDIRank2009

PopulationSecondaryEdPercentageMale2010

FixedLinePhoneConnectionCharge

2 4 6 8

GDP per Capita

SR Importances

GDP

Population2010

TaxRevenueGDP

HDIRank2005

GenderInequalityIndex2008

PopulationSecondaryEdPercentageMale2010

HealthExpenditurePerCapita2007

StandardOfLivingSatisfactionPercent

PersonalHealthSatisfactionPercent

InequalityIncomeIndex2010

SexRatioAtBirth2010

PhoneSubscriptions

SexRatioAtBirth1990

GrossPrimaryEnrolmentRatio

AdultLiteracyRate

FoodDeprivationIntensityPercent1990

ToddlerMortality

Price3MinuteCall

FixedLinePhoneConnectionCharge

MobilePhoneConnectionCharge

5 10 15

GDP per Capita

SR Importances

Figure 6.8: Importances obtained with RF and SR modeling GDP per Capita, using the
parameter values given in Table 6.2. For SR these results correspond to five independent runs
of twenty minutes. On the left graph, variable importances are estimated using the whole final
population. On the right graph, variable importances are estimated using only the Pareto
optimal models in the final population.

Chapter 6. Case Studies – Tower Data 88

6.2 Tower Data

In this case study we examine an industrial data set available at [115], representing sensor
measurements related to a distillation tower. Specifically the response variable is propylene
concentration at the top of the distillation tower while the inputs correspond to temperatures,
flows, and pressures related to the tower. Problems of this kind are known as inferential sensor
development, and have many applications in the chemical industry. We refer to an excellent
study on the application of SVMs for developing robust inferential sensors [49]. We provide a
general context for this problem without delving into the details, summarizing [49, Ch. 1]

In an industrial setting it is extremely important to detect processes that are not running
according to specification. Taking corrective action in time can avoid plant shutdowns,
environmental contamination or hazard to human life. In other words, significant productivity
is to be gained by monitoring such processes in real-time. Effective process monitoring is
possible by measuring a wide variety of properties with hardware sensors. However, such
sensors are not always practical or affordable. The solution is to develop a so-called soft sensor
or inferential sensor, in other words develop a mathematical model instead of hardware.

Soft sensor development has several specific problems, we give an overview of the model
requirements:

Complexity control – Inferential sensors are often prone to under-fitting or overfitting the
learning data. This may seriously affect its reliability as well as its lifespan.

Using high-dimensional data and spaces – Industrial data sets typically contain many
variables, and exhibit non-linear behavior. Overcoming the curse of dimensionality will
be a key issue.

Robustness – Inferential sensors must be robust to noise in the measurements, and to
outliers produced by faulty measurements. In addition the inferential sensor must be
robust against changing operating conditions.

Good generalization capabilities – The learning data will typically be sparse such that
the model must be able to extrapolate well. Graceful degradation of the model is
preferable as compared to instable and erratic behavior outside the training domain.

Performing data compression and outlier detection – Data sets are so large that com-
pression is essential. In addition outliers can contain useful information on abnormal
behavior of the process.

Incorporating prior knowledge – As processes become more understood it is desirable to
incorporate this knowledge into the model, as opposed to relying only on empirical data.

Adaptivity – The processes under study are dynamic, and it is expected that the model will
adapt to gradually changing operating conditions.

Self-diagnostic capabilities – An inferential sensor must be able to evaluate its own pre-
dictive performance in order to be trustable.

From the requirements we observe that RF would not be a good modeling technique for
soft sensor development, specifically the extrapolation is problematic as we demonstrated with
an example in Section 3.2.4.6.

Chapter 6. Case Studies – Tower Data 89

The univariate plot of the response variable is shown in Figure 6.9. To identify correlated
variables we show the correlation matrix of the Tower data in Figure 6.10. We observe that
many variables are correlated.

0

100

200

300

400

500

600

Data Index

T
o

w
e

r
R

e
s
p

o
n

s
e

Figure 6.9: Univariate plot of the response variable in the Tower.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

x17

x18

x19

x20

x21

x22

x23

x24

x25

towerResponse

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Tower Data - Correlat ion Matrix

1

0

−1

Figure 6.10: The correlation matrix of the Tower data set. Every square represents the
correlation between two variables i and j where (i, j) is the index of that square in the matrix.
We observe that many variables are correlated.

All modeling was performed on a quad-core i7 machine operating at 3Ghz, with a memory
capacity of 12 GB. Other parameters are given in Table 6.3.

Chapter 6. Case Studies – Tower Data 90

RF Parameter Value

Number of trees 1000
In-Bag data 2/3
Leaf Size 5
Candidate set size |d|/3

SR Parameter Value

Independent Runs 3
Time Constraint/ Run 1 hour
Accuracy Measure 1−R2

Complexity Measure sum of sub-tree sizes

Table 6.3: Parameter values used for modeling the Tower response.

Importance scores obtained with both RF and SR are shown in Figure 6.11. We observe
that the methods do not identify the same variables. In addition we note that results obtained
with SR are in agreement with similar studies in the literature [116]. We further observe that
good quality models in SR only use the variables, ranking highest in the importance scores:
x1, x4, x6, x12, x23.

If we assume that the importances obtained by SR are reasonable, the results from RF make
more sense. For example consider x6 which scores twice as important as any other variable
with RF, and from the correlation matrix in Figure 6.10 we observe that x6 is correlated
with several other input variables. Similar behavior was also observed in the experiment with
correlated relevant variables in Section 5.2.1.4. In addition, our experiment on a non-linear
model using correlated irrelevant variables from Section 5.1.2.4, showed that many correlated
variables can cause fluctuations in importances even if the correlated variables are not part of
the true input-output relationship. This was related to the Gini score and candidate set size
in Section 5.2.1.3. We conclude that the Tower data contains properties of both experiments,
and importance scores obtained by RF are likely to over- or underestimate depending on the
correlation with other variables. In addition, the number of important variables can not be
determined using the importances obtained with RF, as shown in Figure 6.12.

To asses the quality of produced models with both techniques we randomly chose 10%
of the data to be a test set. Both techniques created new models using the 90% training
data. The RMSE on the test set was computed and is shown in Table 6.4. To see how
variable selection would influence model accuracy, we remodeled the Tower data using the
same training and test sets, while using only the five most important variables as identified by
SR. The RMSE of models created using only five variables is also shown in Table 6.4.

Since the RMSE does not change dramatically when using only five inputs to create models,
we conclude that this variables indeed contain most of the information present in the data set.
We also note that since the test set is chosen randomly, most test points will be in the training
domain. However, for this Tower problem we stress that extrapolation was an explicit design
requirement, which is not possible with the model created by RF. In contrast, models created
by SR for this problem have been shown to behave reasonable under extrapolation [116].

To visualize the prediction errors we sorted the test data according to the response, in
ascending order. Figures 6.13 and 6.14 show the prediction error on the test set. We observe
that RF has a smaller prediction error compared with SR. Recall that RF averages training
points ‘close’ to the point to predict, such that the prediction error will be reasonable in the
training domain. In contrast, SR will search for global models with generalization capabilities.
The RMSE is not a good indication of the generalization capability of a model, and SR will
have a higher RMSE compared with RF. However, in context of the Tower problem, the
models produced by SR are preferable to the models produced with RF.

Chapter 6. Case Studies – Tower Data 91

Number of variables RMSE
in the data set RF SR

25 15.59 31.08
5 17.35 29.48

Table 6.4: RMSE on a random test set with 10% of the data set. We observe that the
RMSE does not change dramatically when creating models using only the five most important
variables as identified with SR. This indicates that these variables contain most information
present in the original data set.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

N
o
rm

a
liz

e
d
 I
m

p
o
rt

a
n
c
e
s

RF - Tower Data

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

N
o
rm

a
liz

e
d
 I
m

p
o
rt

a
n
c
e
s

SR - Tower Data

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25

Figure 6.11: Comparing the importances obtained by RF and SR on the Tower problem.
Observe that the methods do not agree. Results for SR are consistent with the literature[116],
and those variables have been shown to produce good models. If we assume that variables
identified by SR are a superset of the driving variables, we observe from the correlation matrix
in Figure 6.10 that both relevant and irrelevant variables are correlated. We explain the
behavior of RF in the text, analogously to our earlier experiments with correlated variables,
observing that properties from both experiments are present simultaneously.

Chapter 6. Case Studies – Tower Data 92

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

N
o
rm

a
liz

e
d
 I
m

p
o
rt

a
n
c
e
s
 (

%
)

RF - Tower Data - Sorted

x6 x8 x1 x25 x2 x7 x11 x17 x10 x23 x3 x22 x24 x12 x13 x4 x16 x20 x21 x18 x15 x9 x19 x5 x14

Figure 6.12: The sorted variable importances as computed by RF. From this importance scores
the number of important variables can not be identified. This contrasts with importances
obtained by SR as shown in Figure 6.11.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 50 100 150 200 250 300 350 400 450 500

T
o

w
e

r
R

e
s
p

o
n

s
e

Index

RF - Tower Data - Prediction Plot

Prediction
Original

Figure 6.13: Visualization of the prediction error by RF on the Tower problem, using all
variables for training. Note that the x-axis represents the index in the data set, and the points
have been sorted according to the response, in ascending order. In other words the line marked
‘Original’ is not a response surface.

-100

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200 250 300 350 400 450 500

T
o

w
e

r
R

e
s
p

o
n

s
e

Index

SR - Tower Data - Prediction Plot

Prediction
Original

Figure 6.14: Visualization of the prediction error by SR on the Tower problem, using all
variables for training. Note that the x-axis represents the index in the data set, and the points
have been sorted according to the response, in ascending order. In other words the line marked
‘Original’ is not a response surface.

Chapter 6. Case Studies – Summary 93

6.3 Summary

This chapter applies random forests (RF) and symbolic regression (SR) on real-life problems.
Several variables from the data set used to compute the Human Development Index (HDI)

are modeled. Importance scores obtained by both RF and SR agree on some important
variables, but differ on variables with lower importance. In addition the importance scores are
interpretable in the application domain.

For the second case study an industrial data set of a distillation tower is modeled. Here
we observe that variable importances obtained by RF are strongly influenced by correlated
variables and SR identifies other driving variables. We confirmed that the prediction error
does not increase significantly when the data is modeled using only the variables with highest
importance score as obtained by SR. This indicates that SR is more applicable on large scale
problems with many correlated variables.

Chapter 7

Implementation

7.1 Random Forest

Implementations of RF are freely available in several languages. We mention the original
implementation in Fortran or C [11], which has been ported to R [69]. The R version has
also been ported back to C with a Matlab interface [46]. However, for several experiments
we wanted more control than was practical with any of these packages, and they were not
easily extendable. In particular visualization and an intuitive graphical user interface (GUI).
Furthermore, parallelization of the tree building process resulted in a near linear speedup
per additional core, which was greatly appreciated by the authors when running the many
experiments.

The focus of our implementation is to be flexible, and speed was only a secondary objective.
Nevertheless we aimed for a practical balance. We opted to implement RF in C++ since we
are familiar with the language and know it has the potential to be very efficient. In particular
the use of templates enabled us to achieve high flexibility and remain efficient.

Importing data sets into a program is easier said than done. Not all data sets are perfect,
and values can be empty, unknown, or not numeric. We wanted to have one representation
available throughout the program. We opted to first read the data from a CSV1 file and
represent it as a matrix of cell of different types such that all validation could be performed
on this representation. Only after validation is the data converted into a proper matrix type.
This resulted in a more maintainable solution, since the actual algorithm is not dependent on
the external data formats.

The class diagram of the main classes is shown in Figure 7.1. Consequent with the logical
structure of RF we have an RFEnsemble which contains a vector of instances of RFTree. An
RFTree has the root node as data member of type RFNode, and each node has two child nodes.
These classes all have the same template parameters, namely float_type and policy_type.

The float_type allows for compile-time switching between single and double precision
floating point operations. Since the RF algorithm does not perform intensive calculations
where floating point errors would be a problem, using single precision will result in faster
program execution without negative impact on the results.

The policy_type contains several algorithmic parameters, for example which split criterion
to use. Since we used a uniform interface to represent any split criterion, other criteria besides
the Gini index could be investigated as well. Details on how to handle the random generator

1Comma Separated Value

94

Chapter 7. Implementation – Random Forest 95

and parallelization details are also covered by policy_type. Incorporating other variable
importance measures could also be a future option.

A tree is constructed recursively. As can be seen from the static method RFTree.train, a
tree will be constructed from a data matrix. That data will be split into in-bag and out-of-bag
data. A type as specified by policy_type::DataInterface will be used to contain the in-bag
data. This type has the necessary manipulator methods available, such that a node will use
this container to find optimal splitting values and create child nodes recursively.

float_type
policy_type

RFTree
- fRootNode : RFNode
- fOOBError : float_type
- fOOBCount : unsigned int
- fImportances : vector<RFImportance>
+ train(data : matrix<float_type>, settings : policy_type) : RFTree
+ predict(input : vector<float_type>) : float_type
+ getImportances() : vector<RFImportance>
+ getOOBError() : float_type
+ getOOBCount() : unsigned int

float_type
policy_type

RFNode
- fLeftNode : RFNode
- fRightNode : RFNode
- fSplitCondition : float_type
- fSplitVariable : unsigned int
- fValue : float_type
+ predict(input : vector<float_type>) : float_type
+ train(data : policy_type::DataInterface, settings : policy_type) : RFNode

1

1..*

-fRootNode

float_type
policy_type

RFEnsemble
- fTrees : vector<RFTree>
+ predict(input : vector<float_type>) : float_type
+ train(data : matrix<float_type>, settings : policy_type) : RFEnsemble
+ getImportances() : vector<RFImportance>

Figure 7.1: Class diagram of the most important classes for random forest. Only the most
important fields and methods are shown.

It is the responsibility of the policy_type::DataInterface to maintain an internal
structure to facilitate future data requests. For instance, the computation of the Gini criterion
requires that the data of one variable is sorted, and the response is traversed in that sorted
order. By implementing a generic interface the internal storage could be altered. In particular,
we speculated that by using a clever internal organization it might be possible to avoid sorting

Chapter 7. Implementation – Random Forest 96

for every candidate, for every split. We tested an indexing approach, where the sorted indices
are always available, but concluded this did not improve the performance. The extra work to
maintain the internal structure and the penalty of accessing the data indirectly proved to be
a slower approach than sorting the current partition. Since the partition size is expected to
decrease rapidly, we find that only the first few splits on large data sets will spend a relatively
long time to sort the data. For smaller partitions the sort operation is not as expensive. The
current storage technique is to keep partitions in contiguous memory, and not explicitly split
the data set.

The prediction is performed by iterating over the nodes, instead of the more intuitive
recursive approach. Such recursive approach could build up the program stack, and since the
tree depth is dependent on the data set size we preferred not to.

We provided a GUI for our implementation, primarily out of practical considerations. A
screenshot of the GUI is shown in Figure 7.2. While the GUI is rather dense, this allowed us
to easily adjust all parameters when performing experiments.

Figure 7.2: A screenshot of the GUI of our RF implementation. While the presentation is
dense, all relevant parameters are easily accessible.

Chapter 7. Implementation – Random Forest 97

 0

 50

 100

 150

 200

 250

T
im

e
 (

s
e
c
o
n
d
s
)

Number of threads

Parallelization Speedup

1 2 3 4

Figure 7.3: The time in seconds for constructing a forest of 1000 trees using a data set of 500
points in 10 dimensions, and determining the variable importance of the data set. Remark the
linear speedup by increasing the number of threads.

Since the construction of all trees is independent, we opted to parallelize the tree construc-
tion and the computation of variable importance. The in-bag data of all parallel constructions
are required to fit into main memory, but we did not find this a practical constraint. We used
Intel Thread Building Blocks [43] (TBB) to manage and schedule threads. We found this
library accessible and recommend its use in parallel applications. To test the effect of paral-
lelization, we timed the execution of constructing a forest of 1000 trees using a data set of 500
points in 10 dimensions, and determining the importances using 10 independent permutations.
All tests were performed on an Intel Core i7 quad core machine, the measurements are shown
in Figure 7.3. We observe a near linear speedup in the number of threads.

Chapter 7. Implementation – Expression Evaluator 98

7.2 Expression Evaluator

We wanted to have a tool for determining the variable importance from expressions, such
as measures mentioned in Section 4.3.2. To this end we implemented a generic expression
evaluator, focusing more on flexibility than speed.

Plain text representations of expressions are parsed with Bison [22] and Flex [87], such
that each symbol is represented as a node in a parse tree. We opted for an object-oriented
design where the type of nodes is dependent on the operation they represent. This allows the
addition of extra operators in the future, in particular arbitrary complex operators such as
separate programs.

The class diagram for the main classes is shown in Figure 7.4.

SineFunctionExpr

float_type
Expression

+ clone() : Expression*
+ toString() : string
+ getChildren() : vector<Expression*>
+ derive(variable_index : unsigned int) : Expression*
+ simplify() : Expression*
+ evaluate(input : float_type[])

PowerOperatorExprPowerOperatorExpr

UnaryFunctionExpr
- fArgument : Expression*

VariableExpr
- fIndex : unsigned int

BracketExpr
- fChild : Expression*

BinaryOperatorExpr
- fOperand1 : Expression*
- fOperand2 : Expression*

ConstExpr
- fValue : float_type

Figure 7.4: Class diagram for the main classes of the expression evaluator. Only the most
important methods are shown.

The derivation of an expression is handled recursively, where every operator provides the
knowledge of how to derive it. This design allows all current and future operators to be
handled uniformly, which is a practical advantage. The elimination of variables is handled
analogously.

We provided a uniform interface for variable importance measures, as shown in Figure 7.5.
This facilitates the development of new measures. Currently we support the Mean, Shuffle,
Derive, Eliminate measures as described in Section 4.3.2.

Chapter 7. Implementation – Expression Evaluator 99

ReplaceMeanVIEliminateVI ShuffleVI DerivativeVI

float_type
VIMeasure

+ calculateImportances(anExpr : Expression*, aDataSet : DataSet&, anErrorM : ErrorMeasure*)
+ getName() : string

Figure 7.5: Class diagram for classes determining the variable importance. We chose to use a
uniform interface for all importance measures.

Error functions are also handled through a uniform interface, such that any error function
can be used without influencing other logic. Currently we support the sum of square errors,
and 1−R2.

float_type
iteratorA
iteratorB

ErrorMeasure

+ getName() : string
+ calculateError(orig_begin : iteratorA, orig_end : iteratorA, new_begin : iteratorB) : float_type

CorrelationError ResidualError

Figure 7.6: Class diagram for classes calculating a prediction error on a range specified by
iterators.

We consider this implementation to be a prototype that could later be incorporated in
an SR implementation, such that variable importances in expressions could be computed on
individuals during an SR run.

Chapter 8

Conclusion

8.1 Research and Contributions

In this thesis we have studied regression problems, while showing the strong relation with
classification, optimization and search problems. We identified several challenges that are
present in real life data sets in the Introduction, in particular the quantification of the
contribution of individual variables to the response. We stressed that models describing
the data set are invaluable to interpret the importance of variables. We defined variable
importance recognizing that it is a local property in Chapter 2, and introduced desirable
properties of a good method for computing these importances, shown again here:

• Interpretability–Obtained importances should reflect the importances of the true
input variables, without transformation.

• Strictness–Only variables relevant to describing the response should be allocated
importances, so spurious variables should not appear important.

• Conservativeness–At intermediate stages of importance analysis all potentially inter-
esting variables should receive importance.

• Reproducibility–A result can only be considered correct if it is reproducible.

• Universality–It is desirable for importances to be mutually comparable, and in addition
to be problem independent.

In this thesis we focused on two specific techniques, namely random forests (RF) and
symbolic regression (SR). Random forests is a commonly used technique for variable screening,
and is based on an ensemble of classification and regression trees. Symbolic regression has its
roots in evolutionary computation. It creates multiple models represented by explicit algebraic
expressions, and has been shown to perform well on industrial data sets where traditional
methods are no longer sufficient. These techniques are discussed at length in Chapter 3 and 4
respectively, and include algorithmic details. We illustrated the behavior of both techniques
using intuitive examples. In particular in Section 3.2.4.4, we studied the parameter sensitivity
of RF using a data set generated by interpreting the gray-values in an image. This results
in a hard modeling problem where the gray-value is to be reconstructed using only the pixel
coordinates. Since the model prediction could be also represented as an image, we were able to

100

Chapter 8. Conclusion – Future Work 101

intuitively approach the influence of RF parameters. To our knowledge such intuitive examples
are not readily available in the literature.

In Chapter 5 several experiments relevant to real life data sets highlight the differences
in variable importance between RF and SR. After examining and comparing the results we
concluded that the variable importance measures of RF are prone to defects in the data set,
while those of SR are more robust against such defects. We provided explanations on why
RF exhibits this behavior in Section 5.2. We did not encounter a discussion from this point
of view in the literature. In addition further experiments show that the sensitivity of RF
to defects is due to the technique used to compute the variable importances as described in
Section 3.3.2, and not an artifact of the generated models. From the experiment in Section
5.1.2.1 we conclude that RF can underestimate the importance of variables in a non-linear
model given a small data set.

In addition we identified that it is of interest to determine variable importances given
an explicit algebraic expression. Such importances could be readily incorporated in a SR
algorithm, since models are represented as expressions. We presented preliminary experiments
in Section 5.3.

Both RF and SR are applied to two real life case studies in Chapter 6. We concluded that
SR is capable of delivering more interpretable results than RF.

For the RF component of both case studies and experiments we used software developed
in context of this thesis. This software is described in Chapter 7. The RF implementation
is notable for its extensive visualization capabilities. In addition we parallelized the model
construction and variable importance computation. We have shown this approach scales
linearly with the number of processors. This software is controlled using a graphical user
interface providing access to all parameters discussed in this thesis. To our knowledge a prior
parallel implementation of RF for regression was not available.

For experimenting with variable importance in expressions such as described in Section
4.3.2 we developed software, detailed in Chapter 7. Notable is the derivation of algebraic
expressions and elimination of variables from algebraic expressions.

In the Appendices we provide a summary of our background research regarding variable
importance, feature selection and dimensionality reduction. Principal component analysis and
artificial neural networks are commonly used for such problems and are discussed in detail in
Appendix A and B respectively. The popularity of these techniques is readily observed from
references to recent applications.

8.2 Future Work

The model building process of SR is ideally a continuous evolution. But while convergence is
assumed, there is little information available about the speed of convergence or the proximity to
acceptable solutions. We observed that a population of insufficient quality will yield unreliable
variable importances, so model quality must be verified when drawing conclusions. Therefore,
it remains of great interest to look for robust algorithmic configurations that ensure the
discovery of models of sufficient pre-defined quality.

A more formal framework to establish the importance of variables given an expression tree
would be instrumental in guiding the evolutionary process. Future research could expand on
the preliminary results obtained in this thesis.

As we observed from the evolutionary approach by SR, it is beneficial to incorporate

Chapter 8. Conclusion – Future Work 102

variable importance estimation in the modeling technique, since it allows the identification of
interesting areas of the search space. It is of interest to investigate whether other techniques
offer similar opportunities and how importance information discovered during a modeling run
can be actively used within the same modeling run.

We are confident that RF can provide useful prediction models if extrapolation is not
a requirement, based on observations from the examples in Section 3.2.4, and the Tower
case study. We speculate that a better variable importance technique can be developed by
incorporating knowledge about the model structure, in contrast to the current ‘Shuffle’ method.

We suspect that some problems with the importances derived by RF, could be solved by
introducing a special kind of randomness in the trees. In particular using a varying candidate
set size depending on the current depth in the tree. When this set starts only with very few
candidates and gradually grows in size, a single variable would be prevented from dominating
early on.

An interesting feature of RF is to produce a proximity matrix, defining a distance measure
on the data depending on which points were together a leaf partition. Although this topic was
not treated in this thesis, we think this can provide a very useful tool to fill in missing values
in the data by interpolation.

While we compared importances obtained by RF and SR in this thesis, comparison with
regularized learning techniques, such as lasso[111] and elastic net[125], is of interest.

We see great potential in the analysis of variable importance, and stress the need to
understand the modeling technique as well. However, intuitive and user friendly tools are
not readily available to the researcher, resulting in many different implementations. It would
benefit all parties to develop a consistent framework.

Appendices

103

Appendix A

Principal Component Analysis

A.1 Motivation

Principal component analysis (PCA) is a multivariate statistical technique invented by Karl
Pearson in 1901 [89]. The original purpose of the method was finding lines and planes that
best fit a set of points in a p dimensional space. Thirty-two years later Hotelling devised
the method as a technique to find a smaller ‘fundamental set of independent variables (...)
which determine the values’ of the original data set [40, 45]. Hotelling called such fundamental
independent variables ‘components’. If the components are chosen such that they maximize
their successive contributions to the total variance of the original variables, they are called
‘principal components’ [48], hence the term principal component analysis.

At present PCA is a standard tool in statistical data analysis and is used for dimensionality
reduction and pattern recognition in diverse fields. Section A.5 gives an overview of the
applications of PCA.

Much literature has been dedicated to PCA, we refer to [45, 48] for an extensive treatment.
This section is loosely based on material from [98, 45, 48, 109] and will introduce the concepts
of PCA and some basic properties.

A.2 Algorithm

PCA operates on multivariate data, that is data having multiple continuous attributes. The
data is represented by the m× n matrix D.

Attr1 Attr2 . . . Attrn
d1,1 d1,2 . . . d1,n
d2,1 d2,2 . . . d2,n
...

...
. . .

...
dm,1 dm,2 . . . dm,n

D =

d1,1 d1,2 . . . d1,n
d2,1 d2,2 . . . d2,n
...

...
. . .

...
dm,1 dm,2 . . . dm,n

 (A.1)

The goal of PCA is to find a new orthogonal basis such that the data is expressed in a more
meaningful way. In the process we will discover hidden structures and have the opportunity
to discard components that do not make a noteworthy contribution to structure in the data.

Each sample di of the data set can be interpreted as the vector (di,1di,2 . . . di,n)T in n-
dimensional space, spanned by some orthonormal basis. By definition every sample di can
be represented as a linear combination of this orthonormal basis. Actually each data record

104

Chapter A. Principal Component Analysis – Algorithm 105

naturally expresses a linear combination of the canonical basis. Therefore, the canonical basis
is the most logical choice for the basis spanning the original data set:

[
e1 e1 . . . en

]
=

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 = I

With the notion that each data point is expressed by a linear combination of a basis, the
goals of PCA can be reformulated: PCA will construct a new orthogonal basis by linearly
combining the original basis, such that the new basis expresses the data in an optimal way.
Remark that PCA limits the transformation to the new basis to be linear, which will vastly
simplify the process of finding a new basis. However, this property might be limiting for many
data sets.

Let the linear transformation from the original basis to the optimal basis be expressed by
the n× n matrix P . Then this transformation can be used to create a new m× n data set Y
containing the transformed data records:

Y = DP, where P =
[
p1 p2 . . . pn

]
(A.2)

The columns of P denote the new basis vectors {p1, . . . , pn}. The change of basis expressed
by P in Equation A.2 can be interpreted geometrically by stretching and rotating the vectors
associated with di. PCA will construct each vector pi such that it is orthonormal with respect
to any other vector pj for all i 6= j. Otherwise the set {pi} would not be an orthogonal basis.

Once the optimal transformation P is found, the principal components of D are exactly
the vectors {p1, . . . , pn}. The question remains how to chose a good basis for our data. Let us
first examine what the desired properties of Y are, in order to gain insight in the properties of
P as well.

It is expected that a data set contains irrelevant information, for example due to imprecisions
during data collection or a limitation in the data representation. Analysis techniques only work
when the amount of useful information is sufficient, compared to the irrelevant information.
To use a term from signal processing, this balance between relevant and irrelevant information
is expressed as the signal-to-noise ratio. Where a signal denotes relevant information, and
noise denotes irrelevant information. This ratio is expressed by:

SNR =
σ2signal
σ2noise

(A.3)

Where σ2 is the variance. Measurements of high quality will have a high SNR, while a low
SNR is an indication of poor data. It follows that if the SNR > 1, the direction with the
largest variance will contain the most relevant information. In PCA, the data is assumed
to be of sufficient quality, such that the directions exhibiting the largest variance in the
n-dimensional space are assumed to contain the most interesting characteristics of the data
set.

The directions exhibiting the largest variance do not necessary coincide with the original
basis. As an example we generate a two dimensional data set consisting of 100 records
according to the following rules:

U = rand(0, 2), X1 = 2U + rand(0, 0.5), X2 = U + rand(0, 0.5) (A.4)

Chapter A. Principal Component Analysis – Algorithm 106

Where rand(a, b) generates uniform random numbers between a and b. The resulting data is
visualized in Figure A.1, and it is apparent that the original basis does not express the data
well. The arrow σ2signal indicates the direction of the largest variance, intuitively this direction
would be a more suitable basis vector. To complete the new basis the second basis vector is
constructed perpendicular to the first one, indicated by the σ2noise arrow on Figure A.1. The
directions indicated by the arrows conceptually represent directions of signal and noise. The
generating function from Equation A.4 indicates that both variable X1 and X2 contain the
same information, expressed by their correlation. It is not hard to see that they could be
replaced by a single variable u. Moreover the variable u will be defined as linear combination
of both variables.

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

x1

x
2

−6

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6

σ
2

signal

σ
2

noise

Figure A.1: Plot of the data set generated by Equation A.4. The σ2signal indicates the direction

of highest variance which will chosen as the first principal component. The σ2noise arrow
indicates the variance of the noise compared to the first principal component.

This example illustrated the central idea behind the dimensionality reduction of PCA:
correlated variables can be replaced by a single variable by performing a linear transformation.
While this assumption simplifies most problems considerably, it is crucial to see that it only
holds for linearly correlated variables.

Finding the direction with the highest variance in a 2-dimensional space corresponds to
finding the best-fit line of the data points. For higher-dimensional problems this concept has
to be generalized. To this end we introduce variance and covariance formally. For a vector
A = (a1 . . . an) the variance is defined as:

σ2A =
1

n

n∑
i=1

(ai − µA)2, where µA =
1

n

n∑
j=1

aj (A.5)

Chapter A. Principal Component Analysis – Algorithm 107

In case µA is zero this simplifies to:

σ2A =
1

n

n∑
i=1

a2i (A.6)

Consider two vectors A and B with µA = 0 and µB = 0, the covariance of A and B is then
defined as:

σ2AB =
1

n

n∑
i=1

aibi (A.7)

Remark that the variance σ2A is actually the special case of the covariance of vector A with
itself, or alternatively: σ2A = σ2AA. The covariance expresses the linearity of the relationship
between two vectors [98]. Variables are correlated if the covariance is nonzero, where the
magnitude indicates the degree of redundant information. We can reformulate Equation A.7
using vector notation for A and B, where A and B are column vectors from matrix D. The
covariance is then defined using the dot product of vectors di and dj :

σ2didj =
1

n
dTi dj (A.8)

This definition of covariance naturally generalizes to an arbitrary set of column vectors. The
covariance matrix S of D can now be defined as

S =
1

n
DTD, where D = [d1 d2 . . . dn] (A.9)

Every element si,j of the covariance matrix S contains the covariance between the ith and
jth attribute of D. It follows that S must be a symmetric matrix, since σ2AB = σ2BA. Remark
that the elements on the diagonal contain the variance of each attribute. Since the covariance
reflects the correlation and redundancy, large values on the diagonal of S correspond to
interesting structures in the corresponding attribute. Large values outside of the diagonal
indicate that variables corresponding to its indices are correlated and contain redundant
information.

By defining the transformed attributes yi such that they have zero correlation and maximal
variance we impose the following structure on the covariance matrix T of Y :

• Elements that are not on the diagonal must be zero, since we require every new attribute
to be uncorrelated.

• Elements on the diagonal must have decreasing values, since we require principal
components to be ordered by descending variance.

It follows that finding the principal components of D is equivalent with finding the
diagonalization of S. There are multiple methods to diagonalize S which will be explained
shortly. We found that the following algorithm for finding principal components explains the
method intuitively:

1. Choose the normalized direction p1 in which the variance in D is maximized and let this
direction be the first principal component.

2. Obtain another direction pi that maximizes the variance and that is orthonormal with
respect to all previous components.

Chapter A. Principal Component Analysis – Example 108

3. Repeat until n components are selected.

While this algorithm is intuitive, it is certainly not the most efficient algorithm to find the
principal components. By using eigenvector decomposition or singular value decomposition we
can obtain the solution analytically.

A.3 Example

Figure A.2 shows a data set with correlated variables x1 and x2. The result of applying PCA
to this data set is shown in Figure A.3. To illustrate that correlated data can hide significant
information, PCA is also applied to the data shown in Figure A.4. The resulting data set after
transforming to a new basis is shown in A.5.

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

x1

x
2

−6

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6

Figure A.2: The values of two correlated
variables x1 and x2.

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

p2

p
1

−6

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6

Figure A.3: Result from applying PCA on
the data shown in Figure A.2. Variables p1
and p2 are linear combinations of x1 and
x2, removing the correlation.

A.4 Variable Importance

In Chapter 2 we stressed that models are crucial for problem understanding, and variable
importances should be determined from a suitable model. In the approach of PCA there is no
distinction between input data X and output data Y . Consequently, PCA is not concerned
with functional relationships between input and output, and operates on a data matrix D.

The literature refers to PCA as a feature extraction technique, with a curious definition of
extraction. When a new feature is created by combining original features, this new feature is
said to be ‘extracted’. Such feature extraction should not be confused with feature selection.

Even though PCA is sometimes described as a feature selection technique, this is different
from what we understand as feature selection. The transformed features are combinations of
potentially all original features, so technically no features are selected. This alternative use of

Chapter A. Principal Component Analysis – Applications 109

100 200 300 400 500 600 700 800 900
200

300

400

500

600

700

800

900

1000

1100

1200

Figure A.4: A data set suspiciously similar
to data shown in Figure A.2.

200 400 600 800 1000 1200 1400 1600
−30

−20

−10

0

10

20

30

40

Figure A.5: Result from applying PCA
on the data shown in Figure A.4. This
information was previously obfuscated by
the correlated variables.

the term feature selection can be confusing, especially since no functional relationships are
considered. Hence the transformed features do not provide a good indication of the importance
of the original features.

Variable importances are often determined by using PCA in conjunction with partial least
squares regression and variable importance in projection. This is useful when linear regression
is applicable, but assumes explicit knowledge of the model structure. This assumption does
not hold for several problems studied in this thesis.

A.5 Applications

PCA is used for dimensionality reduction as a preprocessing step in tandem with other
classification techniques for medical diagnosis [64, 92, 18]. The difference between the principal
components and the actual discriminatory features for medical diagnostics is emphasized in
[90], discussing issues of interpretability of the principal components as well.
In financial applications PCA is used to pre-process multi-collinear data, for instance to predict
stock prices [108].
Other fields where PCA is employed extensively include image processing [21, 121, 124] and
signal processing [78, 85, 42, 35]. As a specific case of image processing, PCA finds many
applications in face recognition [41, 74, 118].

An interesting link between PCA and neural networks is demonstrated in [122] and from a
different point of view in [96].

A.6 Summary

In this chapter we have demonstrated how principal component analysis (PCA) works. The
assumption is made that the directions exhibiting the largest variance will contain the most
interesting characteristics of the data set. The data is represented in a new orthogonal basis
such that every axis maximizes variance along that direction, these directions are the principal

Chapter A. Principal Component Analysis – Summary 110

components of the data set. This allows to reduce the dimensionality of the data set by
removing features in this new basis with lowest direction of variance.

PCA is in itself not a variable importance technique, but is often used in conjunction with
partial least squares regression and variable importance in projection for determining variable
importances.

Appendix B

Neural Networks

B.1 Motivation

The human brain processes information using a collection of interconnected cells called neurons,
arranged in a neural network (NN). A topic of interest in the field of artificial intelligence is
recreating intelligent behavior by modeling the low-level structure of the brain. The estimated
number of neurons in the human brain is 1011 and they communicate using electrochemical
signals. It is apparent that simulation of the full brain is not yet within reach due to
computational constraints. However, simulations on a smaller scale proved sufficient to yield
an interesting modeling tool with broad applicability, called artificial neural network (NN, the
‘artificial’ is implied).

For extensive literature on NN we refer to [10, 25, 36, 86]. A comparative predictive analysis
of NN, non-linear regression an CART is provided in [93], including numerous applications
and background information. A survey of NN for classification is given in [123]. The link
between NN and traditional statistical models is examined in [96].

B.2 Algorithm

The behavior of biological neural networks is modeled using perceptrons, which are a simplified
artificial representation of a biological neuron. Perceptrons are simple computational units
taking multiple inputs. They will compute the net input by making a linear combination of
all inputs. The coefficients of this linear combination are called the weight of that connection
or also connection strength. Remark that weights can be negative, this is known in biology
as inhibitory neurons eg. a neuron inhibiting other neurons to become active. An activation
function is applied to the net input yielding the output. An artificial neural network is a
collection of artificial neurons with a specific structure.

B.2.1 Topology and Activation Function

The expressiveness of the NN model is determined by the structure of the NN and the choice
of activation function. The structure can be layered, hierarchical or hybrid, we discuss the
layered variant called multi layer perceptron (MLP) introduced in [88]. The standard topology
consists of three layers, the input layer, hidden layer and output layer. The activation function
can be any arbitrary function, but several conventional choices are known to exhibit specific

111

Chapter B. Neural Networks – Algorithm 112

model properties. The most simple NN consists of the inputs connected to just one perceptron
with a linear activation function, as shown in Figure B.1. Remark that optimizing the weights
yield a linear regression model. The single perceptron can be expanded to proper layer(s)
and could use a non-linear activation function, also shown in Figure B.1. A commonly used
activation function is the sigmoid function:

σ(x) =
1

1 + e−βx
, where β is a slope parameter (B.1)

When using a topology with just a single hidden layer, NN will produce nonlinear regression
models. More complex topologies include multiple hidden layers. The choice of the number of
hidden layers and the number of perceptrons per layer are important issues and discussed in
[10, 36].

x1

xd

Σ
y

w1

wd

wy

x
1

x
d

y
1

y
m

Figure B.1: Examples of possible topologies and activation function. On the left there is
only one hidden layer and the output will be predicted using a linear combination of inputs,
as determined by the weights wi. On the right a more complex topology using a sigmoid
activation function as described by Equation B.1

B.2.2 Model Training

Consistent with the biological counterpart a NN is said to be trained, implying gradual learning.
In practice this often means that data points or observations are presented to the NN in
sequence. The NN will then gradually optimize the connection strength between neurons to
achieve a configuration yielding the most accurate prediction. Several training algorithms
exist to adapt the connection weights when a training input is presented to the NN, but
since this is not the focus of this thesis we refer to literature on back-propagation [86, 36, 25],
Levenberg-Marquardt [33], conjugate gradient descent [79, 47, 19].

One thing all the learning algorithms have in common is that they aim to find the global
minimum of the error surface of the NN. The error of a NN is determined by an error function,
commonly chosen to be the SSE as introduced in Equation 1.6. One could view the error of a
NN as a function of the free parameters in the model, described by the connection weights.
So by the relation between regression and optimization, this multi-dimensional error function
can be optimized to find an optimal NN model. Unfortunately it might be difficult to find
the global minimum for this error surface since local optima can be present as well. This is
a typical problem in multi-dimensional optimization where the minimum is lower than its
surrounding neighborhood but above the global minimum, and most algorithms are not able
to find the global minimum if they find a local minimum first.

Chapter B. Neural Networks – Variable Importance 113

The initial connection weights are chosen randomly, determining the starting position of
the optimization. The learning algorithm will then try to find a minimum, and will possibly
depend on the order in which the observations or data points are presented. Remark that a
single training run does not give much guarantee in terms of prediction accuracy. Therefore,
multiple NN are trained starting from different configurations of initial weights, division of
data into training and test set, and training data ordering. The best models obtained by
repeating this process can be combined in an ensemble to provide robust results [34].

B.3 Variable Importance

Many FS techniques are developed by the NN community, an overview is given in [67, 114].
A multi layer perceptron based dimensionality reduction technique is proposed in [73], while
a genetic algorithm is used in [66] to determine optimal subsets. We will consider model
dependent techniques, and summarize only select methods.

Since NN do also model non-linear behavior, inter-dependent variables can be handled by
the modeling technique. Any FS technique applied on NN must not make the assumption that
a linear model is sufficient, for example using individual linear correlations as a dependence
measure is not enough. In practice this means that variables will have to be selected in
sequence, and the model rebuilt after each removal to allow the model to take into account
some of the dependencies.

B.3.1 Using Model Structure

When NN are used for non-linear modeling, the weights are no longer easy to interpret. A
heuristic proposed in [119] exploits both the weight value and the network topology, describing
the ‘saliency’ of a variable i:

Si =
∑
j∈H

(
|wji|∑
i′∈I |wji′ |

∑
k∈O

|wkj |H∑
j′∈H |wkj′ |

)
(B.2)

where I, H, O denote respectively the input, hidden and output layer. Without loss of
generality, suppose that each hidden and output node incoming weight vector sums to one.
Then the previous equation can be written as:

Si =
∑
j∈H

∑
o∈O
|wojwji| (B.3)

It is now easier to see that Si for output o is the sum of the absolute values of contributions
over all paths from i to o. Each individual path receives a score of the product of the weights
from input i to hidden unit j and from j to o. Remark that this measure will depend on the
magnitude of the input, so all variables should be in a similar range.

B.3.2 Using Model Error

Here the relevance of a variable is determined by the change in prediction error caused by
fixing its value to the experimental mean, and varying other parameters. In order for this
approach to be applicable, variables should be independent and the training set should be

Chapter B. Neural Networks – Properties 114

representative of the input space. Saliency based pruning is a backward method introduced in
[82] using the variation of the learning error as evaluation criterion:

Si = MSE −MSE(xi), where MSE(xi) =
1

n

n∑
l=1

(f̂(xl1, . . . , xi, . . . , x
l
d)− yl)2 (B.4)

Where xi =
∑n

l=1 x
l
i/n. Variables are then eliminated in the increasing order of Si, thus

eliminating variables with low impact first. Remark that this method does not take into
account correlated variables.

B.4 Properties

B.4.1 Model Evaluation

The NN training approach is sensible in case of real time observations, as is typical for the brain
of living organisms. The model is slowly adapted in time to accommodate for new conditions,
in contrast to the traditional statistical problems where all data is known in advance. Suppose
we are in the traditional setting where all data is available prior to model building. In order to
‘teach’ the NN the relation between the input and output variables, the data set is split into a
training and test set. The training set will be used to optimize the connection weights, while
the test set will serve to validate the generated model on data the NN did not see before. In
other words it will check the ability of the NN model to generalize to new cases. This is a
crucial step in providing reliable models since the model might have a low prediction error but
over-fits the training set, in which case the model did not capture the more general trend of
the data. This often hints at an overly complex topology, and better results could be obtained
with smaller networks.

B.4.2 Data Distribution

The number of training data required to achieve a good model depends on several factors
such as the number of weights to optimize and the unknown complexity of the underlying
function. In addition the data must be representative to ensure the model will not be biased.
This is related to the problem of imbalanced data as described in Section 1.2.12.5. The effect
is explained using a classification example: If a NN would be trained to recognize unhealthy
or healthy patients and the actual population has a ratio of 10% unhealthy and 90% healthy
patients, the training data should reflect this ratio known as the prior probability. Suppose
the training data would contain 50% unhealthy and 50 % healthy patients. The NN model
would predict more patients to be unhealthy than the actual 10-90 ratio, since this allows for
a lower overall prediction error. Another aspect to keep in mind is that NN in general tend to
extrapolate poorly. Since weights are only adapted for data known to the network, there is no
way to incorporate knowledge about areas outside the domain of the training data.

B.4.3 Related Methods

Other approaches to NN exist as well. Most notably radial basis function networks (RBFN)
[14, 81, 36], probabilistic neural networks (PNN) [103] and generalized regression neural
networks (GRNN) [104], all resembling kernel-based approximation. The activation function
is commonly chosen to be Gaussian. Conceptually a Gaussian curve is positioned around

Chapter B. Neural Networks – Applications 115

a center in the input space for each neuron in the network. The centers are determined by
cluster analysis, or coincide with a random subset of input points. A curve positioned that
way can be thought of as expressing confidence in a local neighborhood: it is unlikely the
response will differ much in close proximity of a known solution.

In unsupervised learning a self organizing feature map (SOFM) is a type of NN designed
for unsupervised learning, where the network attempts to learn the structure of the data. It is
not within the scope of this thesis to elaborate on this topic, but we refer to the literature
[56, 57].

B.5 Applications

While NN are capable of prediction, they are also often used in context of pattern recognition
and classification. For example in the medical sciences NN are employed to aid diagnoses [26].
Many applications in the financial sector NN are discussed in [112]. Matching images is also a
popular application of NN. Here the NN is trained to recognize specific traits of an image,
for example in context of facial recognition [65]. Other applications include the estimation of
wind turbine power curves [68] and time series forecasting [29].

B.6 Summary

In this chapter we have shown that neural networks (NN) are artificial representations of
biological neural networks. A model is represented by interconnected nodes, where each
connection has an associated weight and each node performs a function combining all its
inputs into one output. The modeling process consists of finding optimal connection weights
as to minimize the prediction error. Models are said to be trained, typically by presenting the
training data sequentially and gradually modifying the connection weights using a learning
algorithm. The network topology determines the complexity of the functions that can be
expressed. We note that Variable importance measures for NN can either use the model
structure, or the model error.

Appendix C

Variable Types

Formally we can distinguish between four types of variables: nominal, ordinal, interval and
ratio variable types. Each variable type has a set of applicable operations. The operations of
interest are: distinctness (= and 6=), order (<, ≤, > and ≥), addition (+ and −), multiplication
(∗ and /). Remark that these operations are inclusive, that is to say if it is possible to use
multiplication on a variable then surely all other operators must be defined as well.

Nominal variables can only be distinguished from another, while ordinal variables can be
ordered as well. Such variables are referred to as categorical variables, and lack properties of
numbers. Even though they might be represented by a number, they should not be handled
as one. Numeric variables can be either interval variables or ratio variables. For an interval
variable only the differences between values are meaningful, so plus and minus operators are
allowed. As the name suggests, the ratio of values is also meaningful for variables of the ratio
variable type. This extends the allowed operations by the division and multiplication.

In addition variables can be either discrete or continuous, describing the number of output
values that variable can take. A discrete variable only has a finite (or countably infinite)
number of output values. Remark that both categorical and numeric variables can be discrete.
A continuous variable is one whose values are numbers in R, implying that only numeric
variables can be continuous.

Due to the limitation in the applicable operators on this different variable types, they
also differ in permissible transformations. With permissible transformations we refer to
transformations that do not change the meaning of the variable. For example the same volume
could be measured in liters or gallons, and the conversion from liter to gallons or vice versa is
a permissible transformation.

A nominal variable can only be transformed by a one-to-one mapping since such mapping
only requires the distinctness property. A transformation on ordinal variables should preserve
the order, so if the transformation is a function it must be monotonic. Transformations on
interval variables must also preserve the meaning of addition and subtraction. For example
converting from temperature in Celsius to Fahrenheit requires both a scaling and translation.
Ratio variables can be scaled by a constant factor with preservation of their ratio.

116

Bibliography

[1] Gnuplot. URL http://www.gnuplot.info/.

[2] Russ Abbott, Behzad Parviz, and Chengyu Sun. Genetic programming reconsidered. In Hamid R.
Arabnia and Youngsong Mun, editors, Proceedings of the International Conference on Artificial
Intelligence, Volume 2 & Proceedings of the International Conference on Machine Learning;
Models, Technologies & Applications, MLMTA ’04, volume 2, pages 1113–1116, Las Vegas, Nevada,
USA, June 2004. CSREA Press. ISBN 1-932415-32-7. URL http://abbott.calstatela.edu/

PapersAndTalks/GeneticProgrammingReconsidered.pdf.

[3] Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim. On the surprising behavior of
distance metrics in high dimensional spaces. In Proceedings of the 8th International Conference
on Database Theory, ICDT ’01, pages 420–434, London, UK, 2001. Springer-Verlag. ISBN
3-540-41456-8. URL http://portal.acm.org/citation.cfm?id=645504.656414.

[4] Evolved Analytics. Datamodeler package. URL http://www.evolved-analytics.com/.

[5] Kellie J. Archer and Ryan V. Kimes. Empirical characterization of random forest variable
importance measures. Computational Statistics & Data Analysis, 52:2249–2260, January 2008.
ISSN 0167-9473. doi: 10.1016/j.csda.2007.08.015. URL http://portal.acm.org/citation.

cfm?id=1316079.1316183.

[6] A. F. Ashour, L. F. Alvarez, and V. V. Toropov. Empirical modelling of shear strength of rc
deep beams by genetic programming. Computers & Structures, 81(5):331 – 338, 2003. ISSN
0045-7949. doi: DOI:10.1016/S0045-7949(02)00437-6. URL http://www.sciencedirect.com/

science/article/pii/S0045794902004376.

[7] V. Belle, T. Deselaers, and S. Schiffer. Randomized trees for real-time one-step face detection
and recognition. In Pattern Recognition, 2008. ICPR 2008. 19th International Conference on,
pages 1–4, 2008. doi: 10.1109/ICPR.2008.4761365.

[8] Richard A. Berk. Statistical Learning from a Regression Perspective. Springer Series in Statistics.
Springer, New York, 2008. ISBN 978-0-387-77500-5. doi: 10.1007/978-0-387-77501-2.

[9] G. Biau. Analysis of a random forests model. ArXiv e-prints, 2010. URL http://adsabs.

harvard.edu/abs/2010arXiv1005.0208B.

[10] C. M. Bishop. Neural networks for pattern recognition. Oxford University Press, 1995.

[11] Leo Breiman. Original fortran implementation of random forests. URL http://www.stat.

berkeley.edu/~breiman/RandomForests/reg_software.htm.

[12] Leo Breiman. Bagging predictors. Machine Learning, 24:123–140, August 1996. ISSN 0885-
6125. doi: 10.1023/A:1018054314350. URL http://portal.acm.org/citation.cfm?id=231986.

231989.

117

http://www.gnuplot.info/
http://abbott.calstatela.edu/PapersAndTalks/GeneticProgrammingReconsidered.pdf
http://abbott.calstatela.edu/PapersAndTalks/GeneticProgrammingReconsidered.pdf
http://portal.acm.org/citation.cfm?id=645504.656414
http://www.evolved-analytics.com/
http://portal.acm.org/citation.cfm?id=1316079.1316183
http://portal.acm.org/citation.cfm?id=1316079.1316183
http://www.sciencedirect.com/science/article/pii/S0045794902004376
http://www.sciencedirect.com/science/article/pii/S0045794902004376
http://adsabs.harvard.edu/abs/2010arXiv1005.0208B
http://adsabs.harvard.edu/abs/2010arXiv1005.0208B
http://www.stat.berkeley.edu/~breiman/RandomForests/reg_software.htm
http://www.stat.berkeley.edu/~breiman/RandomForests/reg_software.htm
http://portal.acm.org/citation.cfm?id=231986.231989
http://portal.acm.org/citation.cfm?id=231986.231989

Chapter 8. Bibliography – Bibliography 118

[13] Leo Breiman. Random forests. Machine Learning, 45:5–32, 2001. ISSN 0885-6125. URL
http://dx.doi.org/10.1023/A:1010933404324. 10.1023/A:1010933404324.

[14] D. S. Broomhead and D. Lowe. Multi-variable functional interpolation and adaptive networks.
Complex Systems, 2:321–355, 1988.

[15] Alexandre Bureau, Josee Dupuis, Kathleen Falls, Kathryn L Lunetta, Brooke Hayward, Tim P
Keith, and Paul Van Eerdewegh. Identifying snps predictive of phenotype using random forests.
Genetic epidemiology, 28:171–82, 2005. doi: 10.1002/gepi.20041.

[16] J. Burez and D. Van den Poel. Handling class imbalance in customer churn prediction.
Expert Systems with Applications, 36(3, Part 1):4626–4636, 2009. ISSN 0957-4174. doi:
DOI:10.1016/j.eswa.2008.05.027. URL http://www.sciencedirect.com/science/article/

B6V03-4SHMCF0-1/2/3a0c963f431e508849f011697faba9d0.

[17] Jin-Ding Cai and Ren-Wu Yan. Fault diagnosis of power electronic circuit based on random
forests algorithm. In Natural Computation, 2009. ICNC ’09. Fifth International Conference on,
pages 214–217, 2009. doi: 10.1109/ICNC.2009.390.

[18] Duygu Çalisir and Esin Dogantekin. A new intelligent hepatitis diagnosis system: Pca-
lssvm. Expert Systems with Applications, 38(8):10705 – 10708, 2011. ISSN 0957-4174. doi:
DOI:10.1016/j.eswa.2011.01.014. URL http://www.sciencedirect.com/science/article/

B6V03-523V3B5-1/2/80607f03fddc0557dbe64e762934f435.

[19] C. Charalambous. Conjugate gradient algorithm for efficient training of artificial neural networks.
Circuits, Devices and Systems, IEEE Proceedings G, 139(3):301–310, 1992.

[20] Nitesh V. Chawla, Nathalie Japkowicz, and Aleksander Kotcz. Editorial: special issue on learning
from imbalanced data sets. SIGKDD Explor. Newsl., 6:1–6, June 2004. ISSN 1931-0145. doi:
http://doi.acm.org/10.1145/1007730.1007733. URL http://doi.acm.org/10.1145/1007730.

1007733.

[21] G. Chen and S. Qian. Denoising of hyperspectral imagery using principal component analysis
and wavelet shrinkage. Geoscience and Remote Sensing, IEEE Transactions on, 49(3):973–980,
march 2011. ISSN 0196-2892. doi: 10.1109/TGRS.2010.2075937.

[22] Akim Demaille, Joel E. Denny, and Paul Eggert. Bison - gnu parser generator. URL http:

//www.gnu.org/software/bison/.

[23] Ramon Diaz-Uriarte and Sara Alvarez de Andres. Gene selection and classification of microarray
data using random forest. BMC Bioinformatics, 7(1):3, 2006. ISSN 1471-2105. doi: 10.1186/
1471-2105-7-3. URL http://www.biomedcentral.com/1471-2105/7/3.

[24] Evolved Analytics LLC. DataModeler Release 1.0. Evolved Analytics LLC, 2010. URL www.

evolved-analytics.com.

[25] L. Fausett. Fundamentals of Neural Networks. Prentice Hall, New York, 1994.

[26] Hiroshi Fujita, Tetsuro Katafuchi, Toshiisa Uehara, and Tsunehiko Nishimura. Application of
artificial neural network to computer-aided diagnosis of coronary artery disease in myocardial
spect bull’s-eye images. Journal of Nuclear Medicine, 33(2):272–276, 1992. URL http://jnm.

snmjournals.org/cgi/content/abstract/33/2/272.

[27] Mike Gashler, Christophe Giraud-Carrier, and Tony Martinez. Decision Tree Ensemble: Small
Heterogeneous Is Better Than Large Homogeneous. In 2008 Seventh International Conference
on Machine Learning and Applications, pages 900–905. IEEE, December 2008. ISBN 978-0-7695-
3495-4. doi: 10.1109/ICMLA.2008.154. URL http://dx.doi.org/10.1109/ICMLA.2008.154.

http://dx.doi.org/10.1023/A:1010933404324
http://www.sciencedirect.com/science/article/B6V03-4SHMCF0-1/2/3a0c963f431e508849f011697faba9d0
http://www.sciencedirect.com/science/article/B6V03-4SHMCF0-1/2/3a0c963f431e508849f011697faba9d0
http://www.sciencedirect.com/science/article/B6V03-523V3B5-1/2/80607f03fddc0557dbe64e762934f435
http://www.sciencedirect.com/science/article/B6V03-523V3B5-1/2/80607f03fddc0557dbe64e762934f435
http://doi.acm.org/10.1145/1007730.1007733
http://doi.acm.org/10.1145/1007730.1007733
http://www.gnu.org/software/bison/
http://www.gnu.org/software/bison/
http://www.biomedcentral.com/1471-2105/7/3
www.evolved-analytics.com
www.evolved-analytics.com
http://jnm.snmjournals.org/cgi/content/abstract/33/2/272
http://jnm.snmjournals.org/cgi/content/abstract/33/2/272
http://dx.doi.org/10.1109/ICMLA.2008.154

Chapter 8. Bibliography – Bibliography 119

[28] Robin Genuer, Jean-Michel Poggi, and Christine Tuleau-Malot. Variable selection using random
forests. Pattern Recogn. Lett., 31:2225–2236, October 2010. ISSN 0167-8655. doi: http://dx.doi.
org/10.1016/j.patrec.2010.03.014. URL http://dx.doi.org/10.1016/j.patrec.2010.03.014.

[29] Iffat A. Gheyas and Leslie S. Smith. A neural network approach to time series forecasting. In
WCE 2009, volume 2, July 2009.

[30] Malcolm Gladwell. The ketchup conundrum. The New Yorker, (6):128–135, September 2004.

[31] Ulrike Grömping. Variable importance assessment in regression: Linear regression versus random
forest. The American Statistician, 64:308–319, November 2009. URL http://pubs.amstat.org/

doi/abs/10.1198/tast.2009.08199?journalCode=tas.

[32] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection. J.
Mach. Learn. Res., 3:1157–1182, March 2003. ISSN 1532-4435. URL http://portal.acm.org/

citation.cfm?id=944919.944968.

[33] M. T. Hagan and M. Menhaj. Training feedforward networks with the marquardt algorithm.
Neural Networks, IEEE Transactions on, 5(6):989–993, 1994.

[34] L.K. Hansen and P. Salamon. Neural network ensembles. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 12(10):993–1001, 1990. doi: 10.1109/34.58871.

[35] R. Hariharan, I. Kiss, and I. Viikki. Noise robust speech parameterization using multiresolution
feature extraction. Speech and Audio Processing, IEEE Transactions on, 9(8):856 –865, nov 2001.
ISSN 1063-6676.

[36] S. Haykin. Neural Networks: A Comprehensive Foundation. Macmillan, New York, 1994.

[37] Haibo He and Edwardo A. Garcia. Learning from imbalanced data. IEEE Transactions
on Knowledge and Data Engineering, 21:1263–1284, 2009. ISSN 1041-4347. doi: http:
//doi.ieeecomputersociety.org/10.1109/TKDE.2008.239.

[38] Y.-C. Ho, C. G. Cassandras, C.-H. Chen, and L. Dai. Ordinal optimisation and simulation. The
Journal of the Operational Research Society, 51(4):490–500, Apr. 2000. URL http://www.jstor.

org/stable/254177.

[39] Yu-Chi Ho, Qian-Chuan Zhao, and Qing-Shan Jia. Ordinal Optimisation - Soft Optimization for
Hard Problems. Springer, 2007. ISBN 978-1-4419-4243-2.

[40] Harold Hotelling. Analysis of a complex of statistical variables into principal components. Journal
of Educational Psychology, 24(6):417–441, 1933. ISSN 0022-0663. doi: DOI:10.1037/h0071325.

[41] Ping-Cheng Hsieh and Pi-Cheng Tung. A novel hybrid approach based on sub-pattern technique
and whitened pca for face recognition. Pattern Recognition, 42(5):978–984, 2009. ISSN 0031-
3203. doi: DOI:10.1016/j.patcog.2008.09.024. URL http://www.sciencedirect.com/science/

article/B6V14-4TNWGS6-2/2/2f4e66bbab8ffae715217839918cbc98.

[42] Jeih-Weih Hung and Lin-Shan Lee. Optimization of temporal filters for constructing robust
features in speech recognition. Audio, Speech, and Language Processing, IEEE Transactions on,
14(3):808–832, may 2006. ISSN 1558-7916. doi: 10.1109/TSA.2005.857801.

[43] Intel Corp. Thread building blocks. URL http://threadingbuildingblocks.org/.

[44] Hemant Ishwaran. Variable importance in binary regression trees and forests. Electronic Journal
of Statistics, 1:519–537, 2007. URL http://arxiv.org/abs/0711.2434v1.

[45] J. E. Jackson. A user’s guide to principal components. John Wiley & Sons, Inc., 1991.

http://dx.doi.org/10.1016/j.patrec.2010.03.014
http://pubs.amstat.org/doi/abs/10.1198/tast.2009.08199?journalCode=tas
http://pubs.amstat.org/doi/abs/10.1198/tast.2009.08199?journalCode=tas
http://portal.acm.org/citation.cfm?id=944919.944968
http://portal.acm.org/citation.cfm?id=944919.944968
http://www.jstor.org/stable/254177
http://www.jstor.org/stable/254177
http://www.sciencedirect.com/science/article/B6V14-4TNWGS6-2/2/2f4e66bbab8ffae715217839918cbc98
http://www.sciencedirect.com/science/article/B6V14-4TNWGS6-2/2/2f4e66bbab8ffae715217839918cbc98
http://threadingbuildingblocks.org/
http://arxiv.org/abs/0711.2434v1

Chapter 8. Bibliography – Bibliography 120

[46] Abhishek Jaiantilal. Implementation of random forests with matlab interface. URL http:

//code.google.com/p/randomforest-matlab/.

[47] E. M. Johansson, F. U. Dowla, and D. M. Goodman. Backpropagation learning for multilayer
feed-forward neural networks using the conjugate gradient method. International Journal of
Neural Systems, 2(4):291–301, 1991. doi: 10.1142/S0129065791000261.

[48] I.T. Jolliffe. Principal Component Analysis. Springer-Verlag, 2nd edition, 2002. ISBN 978-0-387-
95442-4. doi: 10.1007/b98835.

[49] Elsie M. Jordaan. Development of Robust Inferential Sensors : industrial application of support
vector machines for regression. PhD thesis, Technische Universiteit Eindhoven, December 2002.

[50] A. Kalos, A. Kordon, G. Smits, and S. Werkmeister. Hybrid model development methodology for
industrial soft sensors. In American Control Conference, 2003. Proceedings of the 2003, volume 6,
pages 5417 – 5422, june 2003. doi: 10.1109/ACC.2003.1242590.

[51] Maarten Keijzer. Improving symbolic regression with interval arithmetic and linear scaling. In
C. Ryan, T. Soule, M. Keijzer, E. Tsang, R. Poli, and E. Costa, editors, EuroGP’2003, volume
2610 of Lecture Notes in Computer Science, pages 71–83. Springer-Verlag, 2003.

[52] Maarten Keijzer. Scaled symbolic regression. Genetic Programming and Evolvable Machines, 5:
259–269, September 2004. ISSN 1389-2576. doi: 10.1023/B:GENP.0000030195.77571.f9. URL
http://portal.acm.org/citation.cfm?id=996967.996974.

[53] Jr. Kenneth E. Kinnear. Generality and difficulty in genetic programming: Evolving a sort.
In Proceedings of the 5th International Conference on Genetic Algorithms, pages 287–294, San
Francisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc. ISBN 1-55860-299-2. URL
http://portal.acm.org/citation.cfm?id=645513.657759.

[54] Kenneth.E. Jr. Kinnear. Evolving a sort: lessons in genetic programming. In Neural Networks,
IEEE International Conference on, volume 2, pages 881–888, 1993. doi: 10.1109/ICNN.1993.
298674.

[55] Ron Kohavi and George H. John. Wrappers for feature subset selection. Artificial Intelligence,
97(1-2):273–324, 1997. ISSN 0004-3702. Special issue on relevance.

[56] Teuvo Kohonen. Self-organized formation of topologically correct feature maps. Biological
Cybernetics, 43:59–69, 1982. ISSN 0340-1200. doi: 10.1007/BF00337288.

[57] Teuvo Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480, 1990. doi:
10.1109/5.58325.

[58] A.K. Kordon, A.N. Kalos, F.A. Castillo, E.M. Jordaan, G.F. Smits, and M.E. Kotanchek.
Competitive advantages of evolutionary computation for industrial applications. In Evolutionary
Computation, 2005. The 2005 IEEE Congress on, volume 1, pages 166–173, sept. 2005. doi:
10.1109/CEC.2005.1554681.

[59] Arthur Kordon, Elsa Jordaan, Lawrence Chew, Guido Smits, Torben Bruck, Keith Haney, and
Annika Jenings. Biomass inferential sensor based on ensemble of models generated by genetic
programming. In Genetic and Evolutionary Computation – GECCO 2004, volume 3103 of
Lecture Notes in Computer Science, pages 1078–1089. Springer Berlin / Heidelberg, 2004. URL
http://dx.doi.org/10.1007/978-3-540-24855-2_118. 10.1007/978-3-540-24855-2 118.

[60] John R. Koza. Genetic Programming - On the Programming of Computers by Means of Natural
Selection. MIT Press, 1992.

http://code.google.com/p/randomforest-matlab/
http://code.google.com/p/randomforest-matlab/
http://portal.acm.org/citation.cfm?id=996967.996974
http://portal.acm.org/citation.cfm?id=645513.657759
http://dx.doi.org/10.1007/978-3-540-24855-2_118

Chapter 8. Bibliography – Bibliography 121

[61] John R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press,
1994.

[62] John R. Koza, F. H. Bennet, D. Andre, and M. A. Keane. Genetic programming iii: Darwinian
invention and problem solving. Evolutionary Computation, 7(4):451–453, 1999.

[63] John R. Koza, M. A. Keane, M. J. Streeter, W. Mydiowec, J. Yu, and G. Lanza. Genetic
Programming IV - Routine Human-Competitive Machine Intelligence, volume 5 of Genetic
Programming. Springer, 2003. ISBN 978-0-387-25067-0.

[64] Fatma Latifoglu, Kemal Polat, SadIk Kara, and Salih Günes. Medical diagnosis of atheroscle-
rosis from carotid artery doppler signals using principal component analysis (pca), k-nn
based weighting pre-processing and artificial immune recognition system (airs). Journal
of Biomedical Informatics, 41(1):15–23, 2008. ISSN 1532-0464. doi: DOI:10.1016/j.jbi.
2007.04.001. URL http://www.sciencedirect.com/science/article/B6WHD-4NG3TC1-1/2/

fddbbf4f8bae4cfa3208bcec7629146e.

[65] S. Lawrence, C.L. Giles, Ah Chung Tsoi, and A.D. Back. Face recognition: a convolutional
neural-network approach. Neural Networks, IEEE Transactions on, 8(1):98–113, jan 1997. ISSN
1045-9227. doi: 10.1109/72.554195.

[66] Sergio Ledesma, Gustavo Cerda, Gabriel Aviña, Donato Hernández, and Miguel Torres. Feature
selection using artificial neural networks. In Alexander Gelbukh and Eduardo Morales, editors,
MICAI 2008: Advances in Artificial Intelligence, volume 5317 of Lecture Notes in Computer
Science, pages 351–359. Springer Berlin / Heidelberg, 2008. doi: 10.1007/978-3-540-88636-5\ 34.
URL http://dx.doi.org/10.1007/978-3-540-88636-5_34.

[67] Philippe Leray and Patrick Gallinari. Feature selection with neural networks. Behaviormetrika, 26:
16–6, 1998. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.4570.

[68] Shuhui Li, Donald C. Wunsch, Edgar O’Hair, and Michael G. Giesselmann. Comparative analysis
of regression and artificial neural network models for wind turbine power curve estimation.
Journal of Solar Energy Engineering, 123(4):327–332, 2001. doi: 10.1115/1.1413216. URL
http://link.aip.org/link/?SLE/123/327/1.

[69] Andy Liaw. Implementation of random forests in r. URL http://cran.r-project.org/web/

packages/randomForest/index.html.

[70] Yi Lin and Yongho Jeon. Random forests and adaptive nearest neighbors. Journal of the
American Statistical Association, 101:578–590, June 2006. URL http://pubs.amstat.org/doi/

abs/10.1198/016214505000001230.

[71] Roderick J. A. Little. Regression with missing x’s: A review. Journal of the American Statistical
Association, 87(420):1227–1237, 1992. ISSN 01621459. URL http://www.jstor.org/stable/

2290664.

[72] Boyang Liu, Raphael T. Haftka, Mehmet A. Akgün, and Akira Todoroki. Permutation genetic
algorithm for stacking sequence design of composite laminates. Computer Methods in Applied
Mechanics and Engineering, 186(2-4):357–372, 2000. ISSN 0045-7825. doi: 10.1016/S0045-7825(99)
90391-2. URL http://www.sciencedirect.com/science/article/pii/S0045782599903912.

[73] R. Lotlikar and R. Kothari. Multilayer perceptron based dimensionality reduction, volume 3,
pages 1691–1695. IEEE, 2002.

http://www.sciencedirect.com/science/article/B6WHD-4NG3TC1-1/2/fddbbf4f8bae4cfa3208bcec7629146e
http://www.sciencedirect.com/science/article/B6WHD-4NG3TC1-1/2/fddbbf4f8bae4cfa3208bcec7629146e
http://dx.doi.org/10.1007/978-3-540-88636-5_34
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.4570
http://link.aip.org/link/?SLE/123/327/1
http://cran.r-project.org/web/packages/randomForest/index.html
http://cran.r-project.org/web/packages/randomForest/index.html
http://pubs.amstat.org/doi/abs/10.1198/016214505000001230
http://pubs.amstat.org/doi/abs/10.1198/016214505000001230
http://www.jstor.org/stable/2290664
http://www.jstor.org/stable/2290664
http://www.sciencedirect.com/science/article/pii/S0045782599903912

Chapter 8. Bibliography – Bibliography 122

[74] Guan-Chun Luh and Chun-Yi Lin. Pca based immune networks for human face recognition.
Applied Soft Computing, 11(2):1743–1752, 2011. ISSN 1568-4946. doi: DOI:10.1016/j.asoc.
2010.05.017. URL http://www.sciencedirect.com/science/article/B6W86-508607C-2/2/

94182e6d9cbf2e9222117c33a26775e5. The Impact of Soft Computing for the Progress of
Artificial Intelligence.

[75] Lunetta, L Brooke Hayward, Jonathan Segal, and Paul Van Eerdewegh. Screening large-scale
association study data: exploiting interactions using random forests. BMC Genetics, 5(1):32,
2004. ISSN 1471-2156. doi: 10.1186/1471-2156-5-32. URL http://www.biomedcentral.com/

1471-2156/5/32.

[76] M. Maragoudakis, E. Loukis, and P.-P. Pantelides. Random forests identification of gas turbine
faults. In Systems Engineering, 2008. ICSENG ’08. 19th International Conference on, pages
127–132, 2008. doi: 10.1109/ICSEng.2008.81.

[77] Trent McConaghy. Latent Variable Symbolic Regression for High-Dimensional Inputs, pages
103–118. Springer, 2010. doi: 10.1007/978-1-4419-1626-6\ 7.

[78] Md. Khademul Islam Molla and Keikichi Hirose. Single-mixture audio source separation by
subspace decomposition of hilbert spectrum. Audio, Speech, and Language Processing, IEEE
Transactions on, 15(3):893–900, march 2007. ISSN 1558-7916. doi: 10.1109/TASL.2006.885254.

[79] Martin Fodslette Møller. A scaled conjugate gradient algorithm for fast supervised learning.
Neural Networks, 6(4):525–533, 1993. doi: DOI:10.1016/S0893-6080(05)80056-5.

[80] A. Montillo and Haibin Ling. Age regression from faces using random forests. In Image
Processing (ICIP), 2009 16th IEEE International Conference on, pages 2465–2468, 2009. doi:
10.1109/ICIP.2009.5414103.

[81] J. Moody and C. J. Darken. Fast learning in networks of locally tuned processing units. Neural
Computation, 1:281–294, 1989.

[82] John E. Moody and Joachim Utans. Principled architecture selection for neural networks:
Application to corporate bond rating prediction. In NIPS’91, pages 683–690, 1991.

[83] United Nations. Human development reports, . URL http://www.hdr.undp.org/.

[84] United Nations. Human development research papers, . URL http://hdr.undp.org/en/

reports/global/hdr2010/papers/.

[85] Y. Panagakis, C. Kotropoulos, and G.R. Arce. Non-negative multilinear principal component
analysis of auditory temporal modulations for music genre classification. Audio, Speech, and
Language Processing, IEEE Transactions on, 18(3):576 –588, march 2010. ISSN 1558-7916. doi:
10.1109/TASL.2009.2036813.

[86] D. Patterson. Artificial Neural Networks. Prentice Hall, Singapore, 1996.

[87] Vern Paxson. Flex - the fast lexical analyzer. URL http://flex.sourceforge.net/.

[88] CORPORATE PDP Research Group. Parallel distributed processing: explorations in the mi-
crostructure of cognition, vol. 1: foundations. MIT Press, Cambridge, MA, USA, 1986.

[89] Karl Pearson. On lines and planes of closest fit to systems of points in space. Philosophical
Magazine, 2(6):559–572, 1901. URL http://stat.smmu.edu.cn/history/pearson1901.pdf.

[90] M. Pechenizkiy, A. Tsymbal, and S. Puuronen. Pca-based feature transformation for classification:
issues in medical diagnostics. In Computer-Based Medical Systems, 2004. CBMS 2004. Proceedings.
17th IEEE Symposium on, pages 535 – 540, june 2004. doi: 10.1109/CBMS.2004.1311770.

http://www.sciencedirect.com/science/article/B6W86-508607C-2/2/94182e6d9cbf2e9222117c33a26775e5
http://www.sciencedirect.com/science/article/B6W86-508607C-2/2/94182e6d9cbf2e9222117c33a26775e5
http://www.biomedcentral.com/1471-2156/5/32
http://www.biomedcentral.com/1471-2156/5/32
http://www.hdr.undp.org/
http://hdr.undp.org/en/reports/global/hdr2010/papers/
http://hdr.undp.org/en/reports/global/hdr2010/papers/
http://flex.sourceforge.net/
http://stat.smmu.edu.cn/history/pearson1901.pdf

Chapter 8. Bibliography – Bibliography 123

[91] Cassio L. Pennachin, Moshe Looks, and João A. de Vasconcelos. Robust symbolic regression
with affine arithmetic. In Proceedings of the 12th annual conference on Genetic and evolutionary
computation, GECCO ’10, pages 917–924, New York, NY, USA, 2010. ACM. ISBN 978-1-
4503-0072-8. doi: http://doi.acm.org/10.1145/1830483.1830648. URL http://doi.acm.org/10.

1145/1830483.1830648.

[92] Kemal Polat and Salih Günes. Automatic determination of diseases related to lymph sys-
tem from lymphography data using principles component analysis (pca), fuzzy weighting pre-
processing and anfis. Expert Systems with Applications, 33(3):636 – 641, 2007. ISSN 0957-
4174. doi: DOI:10.1016/j.eswa.2006.06.004. URL http://www.sciencedirect.com/science/

article/B6V03-4KBVRSB-1/2/a7e2f50bb67db4993002d309402d67d1.

[93] Muhammad A. Razi and Kuriakose Athappilly. A comparative predictive analysis of neural
networks (nns), nonlinear regression and classification and regression tree (cart) models. Expert
Syst. Appl., 29:65–74, July 2005. ISSN 0957-4174. doi: http://dx.doi.org/10.1016/j.eswa.2005.01.
006. URL http://dx.doi.org/10.1016/j.eswa.2005.01.006.

[94] R. P. Salustowicz and J. Schmidhuber. Probabilistic incremental program evolution. Evolutionary
Computation, 5(2):123–141, 1997. doi: doi:10.1162/evco.1997.5.2.123. URL ftp://ftp.idsia.

ch/pub/rafal/PIPE.ps.gz.

[95] Thomas J. Santner, Brian J. Williams, and William I. Notz. The Design and Analysis of Computer
Experiments. Springer Series in Statistics. Springer, 2003. ISBN 978-0-387-95420-2.

[96] Warren S. Sarle. Neural networks and statistical models. In SUGI’94, 1994.

[97] G. A. F. Seber and C. J. Wild. Nonlinear Regression. Wiley, New York, 1989.

[98] Jonathon Shlens. A tutorial on principal component analysis, April 2009. URL http://www.snl.

salk.edu/~shlens/pca.pdf.

[99] David S. Siroky. Navigating random forests and related advances in algorithmic modeling.
Statistics Surveys, 3:147–163, 2009. URL http://www.i-journals.org/ss/viewarticle.php?

id=33.

[100] G. Smits and E. Vladislavleva. Ordinal pareto genetic programming. In Evolutionary Computation,
2006. CEC 2006. IEEE Congress on, pages 3114 –3120, 2006. doi: 10.1109/CEC.2006.1688703.

[101] Guido Smits and Mark Kotanchek. Pareto-front exploitation in symbolic regression. In Una-May
O’Reilly, Tina Yu, Rick L. Riolo, and Bill Worzel, editors, Genetic Programming Theory and
Practice II, chapter 17, pages 283–299. Springer, Ann Arbor, 13-15 May 2004. ISBN 0-387-23253-2.

[102] Guido Smits, Arthur Kordon, Katherine Vladislavleva, Elsa Jordaan, and Mark Kotanchek.
Variable selection in industrial datasets using pareto genetic programming. In John Koza,
Tina Yu, Rick Riolo, and Bill Worzel, editors, Genetic Programming Theory and Practice III,
volume 9 of Genetic Programming, pages 79–92. Springer US, 2006. ISBN 978-0-387-28111-7.
URL http://dx.doi.org/10.1007/0-387-28111-8_6. 10.1007/0-387-28111-8 6.

[103] Donald F. Specht. Probabilistic neural networks. Neural Networks, 3:109–118, 1990. doi:
10.1016/0893-6080(90)90049-Q.

[104] Donald F. Specht. A general regression neural network. Neural Networks, IEEE Transactions on,
2:568–576, 1991. doi: 10.1109/72.97934.

[105] Lee Spector. Towards Practical Autoconstructive Evolution: Self-Evolution of Problem-Solving
Genetic Programming Systems, volume 8, chapter 2, pages 17–33. Springer, 2011. ISBN 978-1-
4419-7746-5. doi: 10.1007/978-1-4419-7747-2\ 2.

http://doi.acm.org/10.1145/1830483.1830648
http://doi.acm.org/10.1145/1830483.1830648
http://www.sciencedirect.com/science/article/B6V03-4KBVRSB-1/2/a7e2f50bb67db4993002d309402d67d1
http://www.sciencedirect.com/science/article/B6V03-4KBVRSB-1/2/a7e2f50bb67db4993002d309402d67d1
http://dx.doi.org/10.1016/j.eswa.2005.01.006
ftp://ftp.idsia.ch/pub/rafal/PIPE.ps.gz
ftp://ftp.idsia.ch/pub/rafal/PIPE.ps.gz
http://www.snl.salk.edu/~shlens/pca.pdf
http://www.snl.salk.edu/~shlens/pca.pdf
http://www.i-journals.org/ss/viewarticle.php?id=33
http://www.i-journals.org/ss/viewarticle.php?id=33
http://dx.doi.org/10.1007/0-387-28111-8_6

Chapter 8. Bibliography – Bibliography 124

[106] Carolin Strobl, Anne L. Boulesteix, Achim Zeileis, and Torsten Hothorn. Bias in random forest
variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics, 8(1):
25+, January 2007. ISSN 1471-2105. doi: 10.1186/1471-2105-8-25. URL http://dx.doi.org/

10.1186/1471-2105-8-25.

[107] Carolin Strobl, Anne L. Boulesteix, Thomas Kneib, Thomas Augustin, and Achim Zeileis.
Conditional variable importance for random forests. BMC Bioinformatics, 9(1):307+, July
2008. ISSN 1471-2105. doi: 10.1186/1471-2105-9-307. URL http://dx.doi.org/10.1186/

1471-2105-9-307.

[108] K. V. Sujatha and S. Meenakshi Sundaram. A combined pca-mlp model for predicting stock
index. In Proceedings of the 1st Amrita ACM-W Celebration on Women in Computing in India,
A2CWiC ’10, pages 17:1–17:6, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0194-7. URL
http://doi.acm.org/10.1145/1858378.1858395.

[109] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data Mining. Pearson
Education, 2006. ISBN 0-321-42052-7.

[110] Astro Teller and David Andre. Automatically choosing the number of fitness cases: The rational
allocation of trials. In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon,
Hitoshi Iba, and Rick L. Riolo, editors, Genetic Programming 1997: Proceedings of the Second
Annual Conference, pages 321–328, Stanford University, CA, USA, 13-16 July 1997. Morgan
Kaufmann. URL http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/GR.ps.

[111] R. Tibshirani. Regression shrinkage and selection via the lasso. J. Royal. Statist. Soc B., 58(1):
267–288, 1996.

[112] Robert R. Trippi and Efraim Turban, editors. Neural Networks in Finance and Investing: Using
Artificial Intelligence to Improve Real World Performance. McGraw-Hill, Inc., New York, NY,
USA, 1992. ISBN 1557384525.

[113] Edwin van Dam, Dick den Hertog, Bart Husslage, and Gijs Rennen. Space-filling designs, 2009.
URL www.spacefillingdesigns.nl.

[114] A. Verikas and M Bacauskiene. Feature selection with neural networks. Pattern Recogni-
tion Letters, 23(11):1323–1335, 2002. URL http://scholar.google.com/scholar?cluster=

11273977636929002914.

[115] Katya Vladislavleva. Symbolic regression. URL http://www.symbolicregression.com/.

[116] Katya Vladislavleva. Model-based Problem Solving through Symbolic Regression via Pareto Genetic
Programming. PhD thesis, Tilburg University, 2008.

[117] Katya Vladislavleva, Kalyan Veeramachaneni, Matt Burland, Jason Parcon, and Una-May
O’Reilly. Knowledge mining with genetic programming methods for variable selection in flavor
design. In GECCO, pages 941–948, 2010.

[118] Huiyuan Wang, Yan Leng, Zengfeng Wang, and Xiaojuan Wu. Application of image cor-
rection and bit-plane fusion in generalized pca based face recognition. Pattern Recog-
nition Letters, 28(16):2352–2358, 2007. ISSN 0167-8655. doi: DOI:10.1016/j.patrec.
2007.07.015. URL http://www.sciencedirect.com/science/article/B6V15-4PCGRPP-2/2/

9823c85f150e1c2a2bd0979a943b50e4.

[119] M Yacoub and Y Bennani. Hvs: A heuristic for variable selection in multilayer artificial neural
network classifier. In ANNIE’97, pages 527–532, 1997.

http://dx.doi.org/10.1186/1471-2105-8-25
http://dx.doi.org/10.1186/1471-2105-8-25
http://dx.doi.org/10.1186/1471-2105-9-307
http://dx.doi.org/10.1186/1471-2105-9-307
http://doi.acm.org/10.1145/1858378.1858395
http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/GR.ps
www.spacefillingdesigns.nl
http://scholar.google.com/scholar?cluster=11273977636929002914
http://scholar.google.com/scholar?cluster=11273977636929002914
http://www.symbolicregression.com/
http://www.sciencedirect.com/science/article/B6V15-4PCGRPP-2/2/9823c85f150e1c2a2bd0979a943b50e4
http://www.sciencedirect.com/science/article/B6V15-4PCGRPP-2/2/9823c85f150e1c2a2bd0979a943b50e4

Chapter 8. Bibliography – Bibliography 125

[120] Weizhong Yan. Application of random forest to aircraft engine fault diagnosis. In Computational
Engineering in Systems Applications, IMACS Multiconference on, volume 1, pages 468–475, 2006.
doi: 10.1109/CESA.2006.4281698.

[121] Chen Yang, Laijun Lu, Heping Lin, Renchu Guan, Xiaohu Shi, and Yanchun Liang. A fuzzy-
statistics-based principal component analysis (fs-pca) method for multispectral image enhancement
and display. Geoscience and Remote Sensing, IEEE Transactions on, 46(11):3937–3947, nov.
2008. ISSN 0196-2892. doi: 10.1109/TGRS.2008.2001386.

[122] Mao Ye, Zhang Yi, and JianCheng Lv. A globally convergent learning algorithm for pca neural
networks. Neural Computing & Applications, 14:18–24, 2005. ISSN 0941-0643. URL
http://dx.doi.org/10.1007/s00521-004-0435-y.

[123] Guoqiang Peter Zhang. Neural networks for classification: a survey. Systems, Man, and
Cybernetics, Part C, IEEE Transactions on, pages 451–462, 2000.

[124] Lei Zhang, R. Lukac, Xiaolin Wu, and D. Zhang. Pca-based spatially adaptive denoising of cfa
images for single-sensor digital cameras. Image Processing, IEEE Transactions on, 18(4):797–812,
april 2009. ISSN 1057-7149. doi: 10.1109/TIP.2008.2011384.

[125] Hui Zou and Trevor Hastie. Regularization and variable selection via the Elastic Net. Journal
of the Royal Statistical Society B, 67:301–320, 2005. URL http://www.stat.purdue.edu/

~tlzhang/mathstat/ElasticNet.pdf.

http://dx.doi.org/10.1007/s00521-004-0435-y
http://www.stat.purdue.edu/~tlzhang/mathstat/ElasticNet.pdf
http://www.stat.purdue.edu/~tlzhang/mathstat/ElasticNet.pdf

