We are updating the requirements for Community registration. As of 7/21/21 all users will be required to register a phone number with their My Alteryx accounts. If you have already registered, you will be prompted on your next login to add your phone number.
Free Trial

Blog - Français

Les analyses et les idées des plus grands esprits de l'analyse.
TIPS de la semaine

Chaque semaine, découvrez de nouvelles astuces et bonnes pratiques pour devenir un expert !

Voir l'index
zakellaoui
Alteryx
Alteryx

pexels-andrea-piacquadio-3767411.jpg

 

Le département des ressources humaines au cœur de la transformation digitale

 

Intégrer l’analytique dans les ressources humaines peut impacter positivement plusieurs sujets : L'effectif, la rémunération, le titre et la fonction du poste, le lieu de travail , l'embauche, l'intégration, l'engagement des employés, la diversité et l'inclusion, la montée en compétences, et plus encore.

De plus, les défis induits par la pandémie et l'incertitude économique compliquent la planification des ressources à long terme, et il ne pourrait pas y avoir de meilleur moment pour les entreprises d'intégrer l’analytique RH dans leur processus de prise de décision.

 

Parmi les défis que rencontrent le département des ressources humaines est l’attrition des employés. 

L’attrition est une préoccupation sérieuse pour les entreprises. Lorsque les employés quittent une organisation, ils emportent avec eux des connaissances tacites inestimables qui sont souvent la source d'un avantage concurrentiel pour l'entreprise. 

 

Comprendre les facteurs d'attrition permet aux départements des ressources humaines d’améliorer la rétention grâce à une planification et une intervention améliorées. 

 

Les informations nécessaires à une telle analyse sont disponibles aux entreprises qui stockent les données des employés.

ZakEllaoui_0-1612904915004.png

 

L'objectif de cet article est de vous montrer comment utiliser ses données afin d'en tirer de la valeur : Réussir à identifier les facteurs de l’attrition de manière simple, rapide, et sans code. 

 

 

Etape 1 : Importer et préparer les données

Afin de réaliser cette analyse, vous pouvez utiliser le jeux de données "Employee Attrition" que vous trouverez sur le lien suivant : Employee Attrition 

 

La première étape consiste à importer les données et avoir un premier aperçu afin de juger la qualité des différents champs. 

Cela se fait grâce à trois outils : "Entrée de données", "Explorateur" et "Récapitulatif des champs".

 

1.Data quality.gif

 

 

Quelques observations : 

 

Cette première étape permet d'identifier les points suivants : 

  • Le jeu de données ne contient pas de valeur "nulls"
  • Deux champs peuvent être écartées de l'analyse car insignifiants : "EmployeeCount" car toutes les valeurs sont uniques et "EducationCount" car il ne contient qu'une qu'une seule valeur.

ZakEllaoui_0-1612905760765.png

  • Certains champs peuvent être catégorisés car ils contiennent plusieurs valeurs distinctes, par exemple âge.

ZakEllaoui_1-1612905971854.png

 

 

Etape 2 : Préparation des données

Etape 2.1 : Créer des variables grâce à l'outil "Formule"

A présent, on souhaite savoir à quelle cohorte démographique appartient chaque employé sur la base de l'âge.

Avant cela, il est nécessaire de vérifier le "type" de données. Cette tâche est rendu facile grâce à l'outil "sélectionner" qui permet de lister tous les champs, leurs types et offrent la possibilité de les cocher, décocher ou de les renommer.

On remarque que certains champs ne sont pas au bon type (âge est considéré comme une chaine de caractère).

2. Typage.gif

 

Pour affecter les bons types aux données automatiquement, nous utiliserons l'outil "Champ automatique"

Ensuite, nous utiliserons l'outil "Formule" afin de catégoriser les âges en cohortes démographiques : 

2. Formule.gif

 

Etape 2.2 : Fractionner les données en ensemble de test, et en ensemble d'entrainement. 

Grâce à l'outil "Créer des échantillons", nous sommes en mesure de choisir le pourcentage de l'échantillon d'estimation et l'échantillon de test. 

Dans notre cas, nous suivrons la règle de 80/20

 
 
 

Etape 3 : Choisir un modèle prédictif 

Pour cette étape, plusieurs options s'offrent à vous : 

Option 1 : Tester plusieurs outils prédictifs parmi +20 outils et vous pouvez les paramétrez vous mêmes.

 

Outils predictifs.PNG

 

 

Option 2 : Laisser Alteryx choisir le bon modèle pour vous grâce à la toute nouvelle fonctionnalité "Modélisation assistée".

 

Partons sur la deuxième option! 

L'outil modélisation assistée simplifie le processus de création de modèles.

Avec la modélisation assistée, vous êtes guidé à travers le processus de construction et d'évaluation de plusieurs modèles prédictifs et la sélection de celui qui convient le mieux à votre analyse d'utilisation d'affaires. 

L'outil de modélisation assistée vous aide à identifier une cible, à définir des types de données, à sélectionner des fonctionnalités, à sélectionner les algorithmes les plus pertinents et à construire vos modèles.

À chaque étape, Alteryx analyse votre jeu de données et les choix que vous avez faits jusqu'à présent, fait d'autres suggestions et vous permet ensuite de prendre la décision finale.

 

Workflo part1.PNG

 

 

Assisted modeling.gif

 

 

Etape 4 : Interprétation des résultats

 

Alteryx recommande d'utiliser une régression logistique avec une précision de 87,8%.  

 

regression.PNG

 

Ce modèle permet d'identifier les facteurs les plus influents sur l'attrition à savoir :

resultat.PNG

 

Imaginez, vous êtes dans le département RH et vous arrivez à faire ce travail, vous montrez cela à un data scientist. Il est interessé par le modèle mais il utilise Python plutôt qu'une interface clic bouton. 

Alteryx permet d'exporter votre travail en un code python avec les commentaires adéquats, comme ceci : 

 

Python.gif

 

 

Etape 5 : Restituez les résultats avec un tableau de bord

La modélisation assistée génère automatiquement une page de restitution qui contient :

  • Les graphiques de performance des modèles
  • La matrice de confusion 
  • L'importance des variables

 

Mais vous pouvez aller plus loin et utiliser les outils de visualisation intégrés dans Alteryx pour créer des graphiques qui illustrent la corrélation entre l'attrition "Yes" avec d'autres variables à étudier tels que l'âge, le sexe ou les stock options.

 

Tableau de bord.gif

 

 

 

Conclusion : 

Les RH jouent un rôle clé dans le développement, le renforcement et le changement de la culture d'une organisation. La rémunération, la gestion de la performance, la formation et le développement, le recrutement et l'intégration et le renforcement des valeurs de l'entreprise sont autant d'éléments essentiels de la culture d'entreprise couverte par les RH.

L'analytique permet de répondre à ces défis. 

Vous avez vu dans cet article comment vous pouvez utiliser le potentiel de vos données couplé au pouvoir d'Alteryx pour : 

  • Importer des données
  • Préparer et nettoyer des données
  • Créer vos propres variables
  • Utiliser la modélisation assistée afin de choisir le modèle optimale
  • Collaborez avec vos data scientists via une plateforme code free & code friendly
  • Restituez vos conclusions avec des tableaux de bords 

 

Je partage avec vous ces cas d'usages RH clients pour plus d'inspiration :https://community.alteryx.com/t5/Alteryx-Use-Cases/tkb-p/use-cases?department_Human+Resources=on&sor...

 

Il me reste plus qu'à vous dire à très bientôt pour un prochain article!

 

 

Zakaria Ellaoui

Sales Engineer - Alteryx 

 

 

 

 

 

 

 

Étiquettes