Showcase your achievements in the Maveryx Community by submitting a Success Story now!
SUBMISSION INSTRUCTIONSWe collaborated with the Geospatial information firm, TerraVeta, to develop automation software for mapping aviation charts. Alteryx was essential to quickly accessing massive amounts of data and quickly find what we needed. Our goal was to save as much time as possible by extracting data from a large database, cleaning and transforming the information, and then accurately plotting the correct data onto the chart with perfect accuracy, freeing up valuable free time for aviation experts to focus on larger conceptual issues. With TerraVeta's expertise in the aviation field and our excitement in tackling unique data and automation challenges, we successfully built a simple, intuitive system that converted a manual, time-intensive process into an automated, error-free solution.
Pilots need information about their destination airport or airfield, and this information is relayed through manually crafted charts; These important and complicated graphical documents provide essential information to the aviation community, and have to be constructed with precision and attention to detail. There's a significant amount of information, including safety warnings, terrain contours, communication frequencies, geospatial data, and other instructions that affect flight safety. While the general format and information is standardized, no two charts are the same, and the information that is needed on each chart changes based on shifting criteria. The technicians that create these charts have a strong background and understanding in aeronautics, but a large portion of the time was spent on menial tasks, such as extracting information from a database piece-by-piece, and individually plotting each element.
Describe your working solution
Our approach to the problem was simple:
We broke the project down into two major sections, Data and Programming. We spent several weeks questions and testing out possible approaches. Some of the questions we asked ourselves were:
In a complicated problem like this, it is essential to ask as many questions up front and determine a general plan, then break up the work into numerous small, attainable segments.
The Project
Here's a sample aviation chart, which in this case describes how a pilot would fly into a specific airport following a specific approach procedure.
Data Engineering
To give you a more detailed view of one segment of the workflow, the image below shows twenty different data transformation steps taking unformatted communication data and outputting a hierarchy of frequencies based on what information is available and which communication frequencies take precedence. Starting from the left
Putting all the text and symbols onto the page is done in MicroStation, CAD software that is popular in many government engineering circles. Previously, the user would have to go through different databases, Excel spreadsheets or Access files, find the information that they needed, make calculations and physically type it into CAD. Geospatial information was plotted individually and most of the information had to be manually plotted, one piece at a time. Our methodology was to rethink the entire process, start from scratch and develop a natural order to populating the chart. We analyzed the document word-by-word and symbol-by-symbol and mapped out how to get the data from the database into Microstation instantaneously, in the exact correct position without error. While the general format is similar, each chart is completely different, fully dependent on the location and the approach procedure, so our programming had to be both logical and adaptive to shifting criteria. In the image below, you can see a segment of the chart with very important information for the pilot about the minimum altitude along the path the aircraft takes towards landing. Every piece of chart is calculated based on the terrain in a supplemental tool, and we automatically plotted this information into the CAD software.
Our programming philosophy is perhaps most similar to Agile methodology. We spend time understanding all the pieces of what needs to get done, we define the end goal very clearly, and we break the entire project into as many different segments as possible, with a very flexible plan of how these segments connect. In our experience, the traditional 'waterfall' methodology, which creates a specific plan with each step clearly defined, associated with timelines and developed sequentially is too rigid for this type of project - things don't go always go according to plan, and for us, flexibility and adaptability is much more important. We learn best by seeing what doesn't work, and we make progress by figuring out how to transfer small successes into the other pieces of the project. At the end, once our strategy worked and we got each piece to plot, we went back and refactored our code for efficiency and optimization.
We initially started developing in the Microstation Development Language, which is close to the 'C' programming language that we have experience in, but due to the lack of resources in some segments of the project, we shifted to Visual Basic (VBA), a common language with large user groups, which MicroStation supports. One of the most challenging aspects of this project was the shifting criteria and hierarchies. For instance, the government organization that maintains this development contract has several pages of criteria when determining which frequencies to publish, in which order, and the location on the page. Our code had to be dynamic enough to adapt to this type of programming, while at the same time avoiding inefficient, hundred-line 'if-statements'. We created a unique framework with cascading logic that mimics the computer science principle of binary search - if one event happens, then we can eliminate different chains of possibilities. In general, we programmed with the mentality that certain parameters or requirements could shift at any given time, and the code had to be dynamic enough to anticipate unexpected rules and situations. This method of programming blended both theory and practical application from computer science and optimization, and is a unique solution that makes our methodology unique.
Overall, we learned that developing a flexible approach that breaks large projects into smaller chunks and pairing with experts in the domain is best, and will be our approach to all future development work. Each one of these charts takes approximately three hours to complete manually - we were able to reduce two hours off of the process, and are working on the last phase, in which we aim to reduce this down to a fifteen minute process. But most importantly, we eliminate human error from the process, allowing the well-trained aeronautical specialists to focus on what they do best - use their experience and knowledge to craft solutions.
Fantastic! Well written, easy to follow the process, and the output was really well done! Amazing the amount of time and money this will save.
Thanks @Normster !
Fantastic! It makes the complex easier to understand.
Thanks @JanCampos ! I appreciate the feedback