Hi team,
I am currently working on the workflow. The rule is to sum the price for the same transaction number and for the same order number. Negative prices indicate a return. But I just realize there is a trick. A transaction number might have multiple order numbers. And an order number might have multiple transaction numbers. When we do the sum, we cannot sum the duplicate part (8051.8). Do you have any suggestions on how to do this?
The data is below.
transaction number | order num | amt |
5691 | 130379 | 8051.8 |
5749 | 130379 | -162.09 |
5691 | 130380 | 8051.8 |
5750 | 130380 | 165.14 |
5752 | 130380 | 24.27 |
5856 | 130380 | -165.14 |
5691 | 130378 | 8051.8 |
5714 | 130378 | -359.12 |
5751 | 130378 | -24.27 |
7805 | 113991 | 68.05 |
7811 | 113991 | 204.16 |
0222 | 176548 | 3183.2 |
0222 | 176547 | 3183.2 |
0040 | 150636 | 5013 |
The result is below.
8051.8+-162.09+165.14+24.27+-165.14+-359.12-24.27=7530.56
transaction number | order num | amt | total order amt |
5691 | 130379 | 8051.8 | 7530.56 |
5749 | 130379 | -162.09 | 7530.56 |
5691 | 130380 | 8051.8 | 7530.56 |
5750 | 130380 | 165.14 | 7530.56 |
5752 | 130380 | 24.27 | 7530.56 |
5856 | 130380 | -165.14 | 7530.56 |
5691 | 130378 | 8051.8 | 7530.56 |
5714 | 130378 | -359.12 | 7530.56 |
5751 | 130378 | -24.27 | 7530.56 |
7805 | 113991 | 68.05 | 272.21 |
7811 | 113991 | 204.16 | 272.21 |
0222 | 176548 | 3183.2 | 3183.23 |
0222 | 176547 | 3183.2 | 3183.23 |
0040 | 150636 | 5013 | 5012.97 |
Solved! Go to Solution.
Sorry, my data is not completed. I expanded my original data. The data need to be grouped by transaction number and order number.
There is no way to know which transaction goes to which group based on the data provided - for example, what column can be used to know which group is which? It cannot be transaction number
transaction number | order num | amt | total order amt |
5691 | 130379 | 8051.8 | 7530.56 |
5749 | 130379 | -162.09 | 7530.56 |
5691 | 130380 | 8051.8 | 7530.56 |
5750 | 130380 | 165.14 | 7530.56 |
5752 | 130380 | 24.27 | 7530.56 |
5856 | 130380 | -165.14 | 7530.56 |
5691 | 130378 | 8051.8 | 7530.56 |
5714 | 130378 | -359.12 | 7530.56 |
5751 | 130378 | -24.27 | 7530.56 |
7805 | 313991 | 68.05 | 272.21 |
7811 | 113991 | 204.16 | 272.21 |
0222 | 176548 | 3183.2 | 3183.23 |
0222 | 176547 | 3183.2 | 3183.23 |
0040 | 150636 | 5013 | 5012.97 |
I do believe this can be done, assuming I understood the problem correctly! Check out this video for details on how the solution works:
Hope this helps and Happy Solving!
Hi CoG,
Do you have any ideas why the following dataset doesn't work?
POS ORDER
1012405606561790 SB012497606568166
1012406606562560 RB012497606568165
1012406606562560 SB012497606568166
1012406606562562 SB012497606568166
1031201606569427 RB012497606568165
They should have had the same groupID based on the logic.
Thanks,
Jocelyn