Update Record in the Specific column only
- RSS-Feed abonnieren
- Thema als neu kennzeichnen
- Thema als gelesen kennzeichnen
- Diesen Thema für aktuellen Benutzer floaten
- Lesezeichen
- Abonnieren
- Stummschalten
- Drucker-Anzeigeseite
- Als neu kennzeichnen
- Lesezeichen
- Abonnieren
- Stummschalten
- RSS-Feed abonnieren
- Kennzeichnen
- Moderator informieren
Hello Team,
I have data set in which some customers have incorrect Sales Numbers. In order to update these incorrect sales numbers, I have one Mapping file that has the correct figure for those specific customers. Could everyone help me to design a flow to update those records correctly?
I have attached the sample data.
- Beschriftungen:
- Help
- Als neu kennzeichnen
- Lesezeichen
- Abonnieren
- Stummschalten
- RSS-Feed abonnieren
- Kennzeichnen
- Moderator informieren
Hello @Learner09 :
Attached is an example using the Join Tool. This allows you to join 2 data sets side-by-side based on the specified criteria. It does not appear that your data sets have unique record IDs. The configuration of the Join Tool (shown below), was to Join by Record Position. This requires that the records in both data sets are in the correct order. If they are not, you will get incorrect results. Consider using a unique ID if possible.
- Als neu kennzeichnen
- Lesezeichen
- Abonnieren
- Stummschalten
- RSS-Feed abonnieren
- Kennzeichnen
- Moderator informieren
@Learner09
I though a simpl Join tool would do the job, but it turns out not.
I assume the unique key in your data shall be the combination of "Number", "Name" and "Report Fiscal Month".
The unique Key is not actually unique in your data, say Row1 and Row2, we dont the difference.
I have modify your original data to make them unique.
and also, we usually also union the J and L anchor data back together to make sure no data loss from upstream.
- Als neu kennzeichnen
- Lesezeichen
- Abonnieren
- Stummschalten
- RSS-Feed abonnieren
- Kennzeichnen
- Moderator informieren
Hello @Qiu thank you for the flow, but the Join tool duplicating the records, for example, I am passing through 50lines (total 5 customers) from sales mapping and join passed around 400+ lines for those 5 customers, which incorrect the output data.